Как работает двигатель стирлинга: Принцип работы мотора Стирлинга


0
Categories : Разное

Содержание

Принцип работы мотора Стирлинга

Многим интересен принцип работы двигателя Стирлинга, и не только из праздного любопытства, но и потому, что если не понять основу его действия, то очень трудно изготовить работающую модель. В данной публикации подробно и насколько возможно, лаконично, дан ответ на этот вопрос. А наглядно все представлено в видеоуроке со всеми схемами.

В этом китайском магазине можно найти отличный генератор.

Рассмотрим сначала

Принцип работы низкотемпературного двигателя.

Сам двигатель состоит из цилиндра, в котором движется вытеснитель и из второго цилиндра, в котором ходит рабочий поршень. Боковые стенки большого цилиндра не проводят тепло. Верхняя часть холодная, нижняя – горячая. Когда вытеснитель опускается вниз, перекрывая горячую пластину, воздух резко охлаждается и сжимается, втягивая рабочий поршень (зеленого цвета на видео).

Товары для изобретателей. Предновогодние скидки до 60%🔥Перейти в магазин Ссылка. Схема низкотемпературного двигателя Стирлинга

При движении вытеснителя вверх, он перекрывает холодную пластину, воздух от нижней пластины резко нагревается, расширяется (от нагрева) и вытесняет рабочий зеленый поршень вверх.

Далее цикл повторяется, так как вытеснитель и рабочий поршень связаны между собой коленвалом со смещением 90 градусов.

Принцип действия высокотемпературного мотора Стирлинга

Левая и правая части цилиндра не касаются друг друга. Между ними стоит теплоизолятор. Когда вытеснитель находится в левой стороне, он вытесняет весь горячий воздух вправо, воздух остывает, всасывая рабочий поршень. Когда же вытеснитель уходит вправо, он выгоняет весь воздух в горячую камеру, воздух нагревается, расширяется и вытесняет рабочий поршень вправо. Рабочий поршень и вытеснитель связаны между собой коленвалом со смещением 90 градусов. Далее цикл повторяется.

Схема высокотемпературного двигателя Стирлинка

Далее вся механика наглядно на видео. Во второй части видео один из вариантов сборки Стирлинга.

Чтобы окончательно понять принцип действия мотора Стирлинга, нужно собрать его работающую конструкцию и в процессе доводки совершенствовать его и тестировать при разных конфигурациях.
Для наиболее простого понимания законов, по которым работает двигатель, достаточно сделать так:
– сделать цилиндр с вытеснителем;
– вместо рабочего поршня установить резиновый воздушный шарик;
– маховик пока не ставить;
– нагреть нижнюю часть устройства, остудить верхнюю и начать изменять положение вытеснителя;
– если попробовать поднять вытеснитель вверх – шарик резко надуется;
– если опустить вытеснитель вниз – шарик сдуется.
Таким образом эти простые действия наглядно покажут, как все происходит в механизме двигателя.

– Далее заменим воздушный шарик на поршень;
– поршень должен свободно двигаться, но следует настроить все так, чтобы он не пропускал воздух;
– смазать поршень силиконовой смазкой;
– проделать те же действия, что ранее были выполнены с шариком, но уже с поршнем;
– понаблюдать ход поршня, зафиксировать в записях в рабочем блокноте для того, чтобы подсчитать ход (выгиб) коленвала;
– изготовить маховик, шатун, коленвал и всё, мотор Стирлинга готов!
– окончательно протестировать готовый аппарат.

Важные моменты, если вы делаете сами движок

При изготовлении мотора Стирлинга придерживайтесь рекомендаций.

1. Стенки цилиндра, где ходит вытеснитель, должны быть сделаны так, чтобы не проводить тепло.

2. Один край цилиндра – холодный, другой- горячий. Чем больше разница температур – тем выше эффективность работы.
3. Между стенками цилиндра и вытеснителем должен быть зазор (3 мм достаточно), чтобы было куда воздуху просачиваться с холодной камеры в горячую.
4. Не должно быть утечек воздуха (свести их к минимуму). Это одно из основных причин, которые не дают двигателю работать.
5. Убрать все трение по максимуму. Используйте силиконовую смазку – она дает очень хороший результат.
Удачи в техническом творчестве!

В другом материале о том, как приспособить для этого движка генератор тока. А тут еще одна модель, которую можно собрать дома.

Как работают двигатели Стирлинга?

В течение почти 200 лет термические двигатели, известные по имени их изобретателя, были известны в как двигатели Стирлинга.

 Их изобретатель работал над построением наиболее эффективного или оптимального рабочего теплового двигателя. Стирлинг подошел к проблеме довольно научным образом. То есть, двигатель (его теоретическая циркуляция) был проанализирован и проверен вычислительно до того, как был построен прототип. Все в теории выглядело очень многообещающим. В принципе, до сих пор предполагалось, что они должны быть одним из наиболее эффективных тепловых двигателей. Так почему бы нам не путешествовать с автомобилями, использующими Стирлинг, несмотря на их многочисленные преимущества?

Рисунок двигателя Стирлинга из оригинального патента от 1816 года. Источник: Wikimedia Commons , автор: Индийский технологический институт, копия изображения в патенте Роберта Стирлинга 1816 года

 .

Чтобы получить полезную мощность от поршневого двигателя, он должен развивать достаточно высокий крутящий момент или достигать высокой скорости вращения. Двигатели Стирлинга не достигают высоких скоростей вращения, поэтому давайте рассмотрим момент.  В основном, это будет зависеть от силы, действующей на поршень, а это, в свою очередь, от давления рабочего тела в рабочем ходу и поверхности поршня, которое работает. Эти упрощенные рассуждения помогут нам понять структурные проблемы двигателей Стирлинга. Для того, чтобы двигатель был больше, чем модель на столе, он должен быть огромным – иметь большой диаметр рабочего поршня, или поршень должен находиться под высоким давлением во время рабочего хода.

Типичная «настольная» модель двигателя Стирлинга с рубежа 20 и 21 веков. Диаметр маховика: около 30 мм. Он должен быть включен в группу так называемых «Гаджеты».

История двигателя Стирлинга в 19 веке

В начале 19-го века двигатели в основном использовались для привода машин (например, насосов в шахтах, приводов центральных машин на заводах), а двигатели могли быть огромными. На повестке дня были указаны рабочие цилиндры диаметром более 0,5-1 м. Несмотря на это, паровые двигатели Уатта выиграли конкурс на двигатели Стирлинга.  Правда, двигатели Стирлинга были проще в дизайне и обработке, но паровые двигатели, включая всю систему (котельную) и все их недостатки, однако, были более эффективными (читай: более дешевый в эксплуатации) и обеспечили большую мощность. Даже в мобильных системах, таких как корабли и поезда (в Англии и Шотландии в середине 19 века сеть железных дорог уже была разработана), паровые двигатели были намного лучше.

Промышленный двигатель Стирлинга примерно с 1860 года. Представленный двигатель, произведенный Эрикссоном, реализовал модифицированный цикл Стирлинга, названный в честь его создателя Эрикссоном . Источник: Wikimedia Commons , Vasárnapi Ujság, 1861/8 [1] .

Конечно, двигатели Стирлинга использовались здесь и там, но они не доминировали на рынке. Более того, установленные двигатели Стирлинга часто заменялись паровыми двигателями, а те, которые остались, уже считались раритетами и нишевыми приложениями. В Европе, возможно, самыми известными двигателями Стирлинга с рубежа XIX и XX веков были те, которые использовались в… аквариумных насосах.

 Одним из наиболее известных производителей таких двигателей в этот период стала компания Louis Heinrici .

Семейство двигателей Стирлинга от компании Louis Heinrici. Иллюстрация из каталога компании с 1914 года. Источник: Wikimedia Commons , автор: First-Neutron .

Но вернемся к теме. В конце 19-го века появились двигатели внутреннего сгорания, сначала с газом, а затем с жидким топливом. Кроме того, в автомобильных приводах появились также электродвигатели. Теоретически двигатели Стирлинга должны быть лучше всех (независимо от того, что это означает), поэтому все время мир науки и техники периодически интересовался ими. Поскольку строительство огромных двигателей Стирлинга в 19 веке утратило свой смысл, предпринимались попытки построить небольшие двигатели, но с высоким давлением рабочего тела, так что создаваемые двигательные системы были бы конкурентоспособными с двигателями внутреннего сгорания. Пик работы на таких двигателях произошел в 1950-х и 1960-х годах.

Конечно, возникла значительная группа проблем, которые были более или менее успешно решены.

Коммерчески доступный электрический генератор, приводимый в движение двигателем Стирлинга от Philips с середины 20-го века (1953). Электрическая мощность: около 180 Вт. Высота корпуса: около 0,5 м. Источник: Викисклада , Норберт Шнитцлер .

Использование гелия

В то же время появилась идея заменить рабочий фактор. До сих пор под лозунгом «рабочий фактор» в двигателях Стирлинга мы понимали обычный атмосферный воздух. В какой-то момент инженеры и ученые задали вопрос, есть ли что-то лучше с точки зрения термодинамических свойств? Да. Более или менее с 1930-х годов этот газ был коммерчески продан в промышленных количествах. Это гелий. Использование гелия в качестве рабочего вещества значительно повышает эффективность двигателей Стирлинга. Однако использование нового фактора вызвало совершенно новые проблемы. Гелий плохо хранится даже при комнатной температуре. То есть. из-за очень малых частиц, он имеет тенденцию проникать в большинство материалов, используемых в технологии со сталью в головке.

 В 60-х и 70-х годах были изучены гелиевые двигатели. Их характерная особенность, видимая на фотографиях,… прикреплена к двигателю гелиевого цилиндра, используемого для пополнения газа, выходящего из двигателя практически через все его элементы. Проблема была серьезной. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов). Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов).
 Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов). Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично.

Моторы Стирлинга, их применение в конце 20 века

В конце 20-го века двигатели Стирлинга снова вернулись. Оба НАСА, Государственный департамент США и Европейский союз инвестировали в исследования новых поколений двигателей Стирлинга. Они были в основном предназначены для солнечных систем (т. Е. Источник тепла должен был быть солнечным светом, сфокусированным на обогревателе двигателя большим параболическим зеркалом). Многие из этих двигателей имели неровный дизайн.

Пример проекта двигателя Стирлинга, предложенного г-ном Мацей Жукашем в соответствии с патентом P. 389415 . Проект выполнен в рамках магистерской работы на факультете SiMR в Варшавском технологическом университете (руководитель: проф. Вяслав Остапски, PhD, Eng.

Идея этой идеи заключалась в том, что весь двигатель с электрическим генератором должен быть запечатан в герметичном (для гелиевого) несъемного корпуса, считая, что он не может использоваться на протяжении всего срока его службы. Однако на этот раз технология не удалась. Если были получены положительные результаты, они были связаны со слишком высокими издержками. Наилучшим образом, самые распространенные двигатели Стирлинга в двадцатом веке остались в Индии настольные вентиляторы, конструктивно похожие на вышеупомянутые насосы для аквариума…

Пример солнечной системы с электрическим генератором, приводимым в движение двигателем Стирлинга. Источник: Wikimedia Commons , автор: Загружено Skyemoor .

Одной из последних идей использования двигателей Стирлинга было «спуск с параметров». То есть нашли применение для двигателей с низкими характеристиками и существенно более низкой эффективностью, чем двигатели внутреннего сгорания и электродвигатели.  Примерно в начале XXI века с помощью двигателей Стирлинга была обнаружена идея восстановления энергии, утраченной в процессах нагрева, таких как «дымоход» с дымовым газом из СО-печей. Однако экономический расчет по-прежнему был против использования таких решений в больших масштабах.

Конечно, несмотря на все технологические проблемы, двигатели Стирлинга производятся и используются. Однако это очень специфические приложения, которые позволяют оправдать высокие производственные и / или эксплуатационные расходы. В дополнение к военным применениям примерами являются энергетические системы, работающие на биогазе, восстановленном на полигонах. Яднак таких двигателей по-прежнему остается большой «экзотикой» в мире технологий, и, вероятно, большинство читателей этого текста никогда не встретит такой движок…

Коммерчески доступный электрический генератор, приводимый в движение двигателем Стирлинга STM с начала 21 века. Электрическая мощность: около 38 кВт или 65 кВт. Высота корпуса: около 1 м. Источник: Викисклада , автор: В.Т.Чыманский.

Заключение

Мы процитировали выше упрощенную историческую схему тенденций проектирования двигателей Стирлинга. Конечно, мы опустили множество проектов как энтузиастов, так и тех, которые были разработаны в «серьезных» исследовательских проектах (например, машины с жидкими поршнями – «жидкость», термоакустические двигатели и т.д.). Это не меняет того факта, что инженеры и ученые пытались построить эффективный и надежный двигатель Стирлинга почти 200 лет. Практически каждое последующее поколение инженеров пытается решить проблемы этих двигателей, надеясь, что это обеспечит технический прогресс, который произошел в предыдущие 20-25 лет. К сожалению, усилия по-прежнему неэффективны. Я должен признать, что, по-видимому, мое поколение также пыталось это сделать, а также потерпело неудачу. Однако мы глубоко убеждены в том, что

Совсем другое дело, что каждое поколение инженеров начинает свою деятельность почти с самого начала, на практике имея очень сложный доступ к документации ранее выполненных работ… но это снова тема для совершенно другого случая.

Модель двигателя Стирлинга в бета-системе, разработанной и сделанной г-ном Рафалом Ходорковским в рамках инженерных работ на факультете SiMR в Варшавском технологическом университете (руководитель: Мачей Тулодзекский, PhD). Длина двигателя: около 35 см.

Двигатель Стирлинга — Энциклопедия журнала «За рулем»

Энциклопедия
  • Издания
    • Журнал “За рулем”
    • Газета “За рулем – Регион”
    • Журнал “Купи авто”
    • Журнал “Мото”
    • Журнал “Рейс”
    • Книги, Каталоги
  • Товары
    • Интернет магазин
    • Товары ЗР
  • Реклама
  • Подписка
  • Турбюро
  • Архив
  • Форум
  • Энциклопедия
  • Купи авто
  • Автомобиль — модели, марки
  • Устройство автомобиля
  • Ремонт и обслуживание
  • Тюнинг
  • Аксессуары и оборудование
  • Компоненты
  • Безопасность
  • Физика процесса
  • Новичкам в помощь
  • Приглашение
  • Официоз (компании)
  • Пригородные маршруты
  • Персоны
  • Наши люди
  • ТЮВ
  • Эмблемы
  •  
  • А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ё
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф

Двигатель Стирлинга

Статья опубликована 26. 06.2014 05:56
Последняя правка произведена 26.06.2014 05:58

Двигатель внешнего сгорания Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье — «История изобретения паровых машин». А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания…

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим «экономом».

В современной же научной литературе этот очиститель имеет совсем другое название — «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма «Филипс». Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

• Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

• Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий.

• Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

• Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

• «Всеядность» двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

• Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

• Увеличенный ресурс — простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

• Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

• Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

• Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении — уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью — увеличение по клику.

Альфа-Стирлинг — содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг — цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Гамма-Стирлинг — есть поршень и «вытеснитель», но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Двигатель Стирлинга

Автор: Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль» [1]
25298 2

Важным новым источником механической энергии для привода автомобиля является двигатель Стирлинга. Он почти неизвестен, существуют только его прототипы [2], поэтому можно дать лишь беглое описание его принципа действия и конструкции. В первоначальном виде он существовал как тепловая расширительная машина, в цилиндре которой рабочее тело, например, воздух, перед сжатием охлаждался, а перед расширением — нагревался. Схема и принцип действия такого двигателя показаны на рис. 1.

Рис. 1. Схема и принцип действия двигателя Стирлинга:
1 — цилиндр; 2 — охлаждающая рубашка; 3 — рабочий поршень; 4 — вытеснитель; 5 — шток вытеснителя.

В верхней части цилиндра 1 имеется водяная охлаждающая рубашка 2, а дно цилиндра постоянно нагревается пламенем. В цилиндре размещен рабочий поршень 3 уплотненный поршневыми кольцами и соединенный шатуном с коленчатым валом (на рисунке коленчатый вал не показан). Между дном цилиндра и рабочим поршнем находится поршень-вытеснитель 4, который перемещается в цилиндре с большим зазором. Заключенный в цилиндре воздух через этот зазор перекачивается вытеснителем 4 либо к днищу рабочего поршня, либо к нагреваемому дну цилиндра. Вытеснитель приводится в движение штоком 5, проходящим через уплотнение в поршне, и приводимым эксцентриковым механизмом, который вращается с углом запаздывания около 90° по сравнению с механизмом привода рабочего поршня.

В положении а поршень находится в НМТ (нижняя мертвая точка) и охлаждаемый стенками цилиндра воздух заключен между ним и вытеснителем. В следующей фазе б вытеснитель движется вверх, а поршень остается в НМТ. Воздух между ними выталкивается через зазор между вытеснителем и цилиндром к дну цилиндра и при этом охлаждается стенками цилиндра. Фаза в является рабочей, в течение которой воздух нагревается горячим дном цилиндра, расширяется и выталкивает оба поршня вверх к ВМТ (верхняя мертвая точка).

После совершения рабочего хода вытеснитель возвращается в нижнее положение к дну цилиндра и выталкивает воздух через зазор между стенками цилиндра в камеру под поршнем, воздух при этом охлаждается стенками. В положении г холодный воздух подготовлен к сжатию, и рабочий поршень движется от ВМТ к НМТ. Поскольку работа, затрачиваемая на сжатие холодного воздуха, меньше работы, совершаемой при расширении горячего воздуха, то возникает полезная работа. Аккумулятором энергии, необходимой для сжатия воздуха, служит маховик.

В описанном исполнении двигатель Стирлинга имел низший КПД, так как теплоту, содержащуюся в воздухе после совершения рабочего хода, необходимо было отводить в охлаждающую жидкость через стенки цилиндра. Воздух в течение одного хода поршня не успевал охлаждаться в достаточной степени, и требовалось увеличить время охлаждения, вследствие чего частота вращения двигателя также была небольшой. Термический КПД, который зависит, как говорилось ранее, от разницы максимальной и минимальной температур рабочего цикла, был также небольшим. Теплота отработавшего воздуха отводилась в охлаждающую воду и полностью терялась.

Рис. 2. Схема двигателя Стирлинга с регенератором и ромбическим кривошипно-шатунным механизмом:
1 — вытеснитель; 2 — рабочий поршень; 3 — радиатор; 4 — регенератор; 5 — подогреватель с форсункой; 6 — трубки подогревателя; 7 — вход воздуха в подогреватель; 8 — выход отработавших газов из подогревателя.

Двигатель Стирлинга был значительно усовершенствован фирмой «Филипс» («Philips» – Нидерланды). Прежде всего, был применен внешний регенератор теплоты, через который осуществлялась перекачка воздуха из верхней части цилиндра в нижнюю под действием вытеснителя. Последовательно к регенератору во внешнем контуре был подключен радиатор. Регенератор аккумулирует теплоту воздуха, поступающего после расширения в холодную камеру. При течении воздуха в обратном направлении аккумулятор вновь отдает ему теплоту. Тем самым возрастает разница максимальной и минимальной температур цикла и теплоту необходимо отводить системой охлаждения. Радиатор, размещенный за регенератором, отводит только часть этой теплоты, остальная сохраняется в аккумуляторе и используется вновь. Вследствие этого не только улучшается КПД двигателя, но и увеличивается его максимальная частота вращения, что влияет на мощность и удельную массу двигателя. Теплота отработавших газов подогревателя используется для повышения температуры свежего воздуха, подаваемого в его камеру сгорания. Описанная конструктивная схема двигателя показана на рис. 2.

Поршень 2 является рабочим, он передает давление воздуха на кривошипно-шатунный механизм, а вытеснитель 1 предназначен для перемещения воздуха из верхней части цилиндра в нижнюю. В положении а воздух из пространства между двумя поршнями поступает через радиатор 3 и регенератор 4 в трубки подогревателя 6 и затем в верхнюю часть цилиндра. Трубки подогревателя размещены в камере сгорания, куда свежий воздух для сгорания подается по каналам 7 и затем, проходя через теплообменник, поступает в зону распылителя форсунки 5; отработавшие газы из подогревателя отводятся через выпускной трубопровод 8.

В положении а воздух сжат и при движении в верхнюю часть цилиндра нагревается сначала в регенераторе, а затем в подогревателе. В положении б весь воздух вытеснен из пространства между двумя поршнями и выполняет работу, перемещая оба поршня в нижнее положение. В положении в после совершения работы рабочий поршень остается в нижнем положении, а вытеснитель 1 начинает выталкивать воздух из верхней части цилиндра в пространство между поршнями через регенератор, в котором воздух отдает значительную часть своей теплоты, и радиатор, где воздух охлаждается еще глубже. В последней фазе цикла г воздух охлажден и вытеснен из верхней части цилиндра в пространство между поршнями, где происходит его сжатие.

Сжатие холодного воздуха, поступление его через регенератор и радиатор в верхнюю часть цилиндра, последующее расширение и охлаждение воздуха представляют рабочий цикл. В цилиндре сохраняется постоянная масса воздуха, поэтому цилиндр работает без выхлопа. Для подогрева можно использовать любой источник тепла. В рассмотренной схеме применен котел на жидком топливе; содержание вредных веществ зависит от полноты сгорания топлива в камере сгорания котла. Поскольку при этом создается режим непрерывного сгорания при относительно низкой температуре и большом избытке воздуха, можно достичь полного сгорания и небольшого содержания вредных веществ.

Преимущество двигателя Стирлинга заключается также в том, что он может работать не только на разнообразных топливах, но дает возможность применять различные виды источников теплоты. Это означает, что работа двигателя не зависит от наличия атмосферы. Он может одинаково хорошо работать в замкнутом пространстве как на подводных лодках, так и на спутниках. При использовании теплового аккумулятора с LiF теплота подводится к двигателю по теплопроводу, как это показано на рис. 3.

Рис. 3. Соединение теплового аккумулятора тепла с головкой цилиндра двигатели Стирлинга:
1 — резервуар с LiF; 2 — жидкий натрий; 3 — нагревательная спираль; 4 — теплоизоляция.

В нижней части рис. 2 показан ромбический механизм привода, который управляет движением обоих поршней. Для привода используются два коленчатых вала, соединенных парой шестерен и вращающихся в противоположных направлениях. Концы штока вытеснителя 1 и пустотелого штока поршня 2 через отдельные шатуны соединены с обоими коленчатыми валами. Если кривошипы обоих коленчатых валов находятся в верхнем положении и движутся из положения а в положение б, то шатуны рабочего поршня 2 находятся вблизи ВМТ и он немного перемещается около ВМТ. Шатуны вытеснителя, перемещающегося в этой фазе цикла, движутся вниз и поршень также движется с наибольшей скоростью из положения а в положение б.

Противоположное направление вращения двух коленчатых валов позволяет разместить на них противовесы, необходимые для уравновешивания сил инерции первого порядка и их моментов от возвратно-поступательно движущихся масс, которые существуют у одноцилиндрового и рядных двигателей.

Ромбический механизм имеет еще и то преимущество, что шатуны симметрично передают усилия от штоков поршней на коленчатые валы, а в подшипниках и уплотнениях поршней не возникают боковые силы. Последнее очень важно, так как для работы двигателя с хорошим КПД необходимо высокое рабочее давление.

У обычных кривошипно-шатунных механизмов при высоком давлении на поршень и больших углах отклонения шатуна возникают большие боковые силы, действующие на поршень и являющиеся причиной больших потерь на трение и большого износа. При применении крейцкопфа или же ромбического механизма это отрицательное явление устраняется и можно достичь хорошего уплотнения поршней.

Чтобы штоки не передавали большие усилия на коренные и шатунные подшипники коленчатых валов, под рабочим поршнем поддерживается противодавление, равное среднему рабочему давлению в цилиндре, оно составляет около 20 МПа.

Зависимость индикаторного КПД ηi от удельной литровой мощности Nуд одноцилиндрового двигателя Стирлинга мощностью 165 кВт показана на рис. 4. Температура в подогревателе равна 700 °C, охлаждающей жидкости — 25 °C. Рабочее давление газа составило 11 МПа.

Рис. 4. Зависимость индикаторного КПД ηi двигателя Стерлинга от его удельной литровой мощности при различных видах рабочего тела. Цифры на кривых — частота вращения двигателя в мин-1.

На диаграмме показаны зависимости для трех видов рабочего тела: воздуха, гелия и водорода. Точки с числами на кривых обозначают соответствующую частоту вращения (в мин-1). Видно, что наибольшие значения КПД достигаются при низких значениях удельных мощностей. Заметно также большое различие показателей двигателя при использовании вместо воздуха водорода.

Рис. 5. Уплотнение штока поршня:
C — насосное кольцо; R — регулятор давления.

Высокое давление рабочего тела, действующее в двигателе Стирлинга, требует наличия толстых стенок картера и цилиндра. При применении водорода в качестве рабочего тела масло не должно попадать в рабочее пространство и поэтому необходимо иметь высокогерметичное уплотнение штока поршня. Хорошо зарекомендовало себя цилиндрическое диафрагменное уплотнение в сочетании с масляной подушкой (рис. 5). Диаметры d и d2 выбраны так, чтобы объем масла под диафрагмой сальника не изменялся при перемещении штока. Маслосъемное поршневое кольцо C выполняет функцию насосного элемента, а регулятор R поддерживает давление масла под диафрагмой на уровне среднего давления газа в цилиндре.

Схематический поперечный разрез двигателя Стирлинга с ромбическим механизмом приведен на рис. 6. Это двигатель первого поколения, имеющий картер с высоким избыточным давлением. Двигатель Стерлинга постоянно совершенствуется и его четырехцилиндровая модель второго поколения уже имеет поршень двойного действия. Соединение горячей верхней камеры одного цилиндра с холодной камерой под поршнем соседнего цилиндра позволяет достичь необходимого изменения объема без отдельного поршня-вытеснителя. У четырехцилиндрового двигателя сдвиг между кривошипами поршней соседних цилиндров составляет 90°, что весьма нежелательно.

Рис. 6. Схематический разрез одноцилиндрового двигателя Стерлинга:
1 — выход воздуха из подогревателя; 2 — кольцевая камера сгорания; 3 — горячая камера цилиндра; 4 — вход воздуха в подогреватель; 5 — поршень-вытеснитель; 6 — цилиндр; 7 — камера сжатия (холодная камера) цилиндра; 8 — шток поршня-вытеснителя; 9 — рабочий поршень; 10 — шток рабочего поршня; 11 — траверса рабочего поршня; 12 — шатун рабочего поршня; 13 — шатун поршня-вытеснителя; 14 — траверса поршня-вытеснителя; 15 — топливная форсунка; 16 — горелка; 17 — подогреватель; 18 — трубки подогревателя; 19 — ребра цилиндра; 20 — регенератор; 21 — трубки радиатора; 22 — камера противодавления; 23 — противовес; 24 — приводная шестерня; 25 — коленчатый вал.

Схема соединения соседних цилиндров с таким расположением кривошипов показана на рис. 7. Соединительные трубопроводы связывают горячую камеру, подогреватель, регенератор, радиатор и холодную камеру. Два коленчатых вала вращаются в одном направлении и связаны с поршнями через крейцкопфный механизм. В нижней части рис. 7 на диаграммах жирной линией обозначены фазы цикла, соответствующие положениям 1—4 поршней. Для привода поршней используется или четырехопорный коленчатый вал (двигатели шведской фирмы «Юнайтед Стирлинг») или же наклонная шайба (двигатель «Филипс 4-215DA»).

На рис. 7 показаны последовательные этапы 1—2 — сжатие холодного газа в холодной камере; 2—3 — перемещение сжатого воздуха в горячую камеру — рабочий ход; 3—4 — расширение-охлаждение газа при поступлении в холодную камеру — рабочий ход; 4—1 — перемещение газа в холодную камеру.

Рис. 7. Схема работы двигателя Стерлинга с поршнем двойного действия:
А — горячая камера; Б — подогреватель; В — регенератор; Г — радиатор; Д — холодная камера.

В рядном двигателе соединительный канал между четвертым и первым цилиндрами имеет большую длину и объем, поэтому используются двигатели с V-образным или звездообразным расположением цилиндров. В обоих случаях все четыре цилиндра расположены близко друг от друга, а их верхние части (головки) образуют группы, обогреваемые общим котлом. Теплоизоляция такой конструкции также отличается простотой.

Фирма «Филипс» внесла в двигатель Стерлинга много интересных изменений. Для первых регенераторов использовались мелкие сита из тонкой медной проволоки, в дальнейшем они были заменены блоком из пористой керамики. Материал регенератора должен иметь большую удельную теплоемкость и выдерживать резкие изменения температуры. Поэтому регенератор должен быть разделен на несколько меньших элементов. Пористый материал легко аккумулирует и отдает теплоту и позволяет благодаря этому обеспечить работу двигателя с частотой вращения до 4000 мин-1.

Рис. 8. Изменение крутящего момента по углу поворота коленчатого вала в четырехцилиндровом бензиновом двигателе (А) и двигателе Стирлнига с поршнем двойного действия (Б) [3]

Мощность двигателя зависит от среднего рабочего давления. У двигателя «Филипс» это давление составляло около 20 МПа. Чтобы избежать прижатия поршня к стенке цилиндра, был применен уже упомянутый ромбический механизм и, кроме того, под рабочим поршнем была образована камера, в которой поддерживалось среднее рабочее давление газа. В этих условиях кривошипно-шатунный механизм испытывает нагрузки вследствие небольших отклонений от этого давления, а также действие инерционных сил, поскольку давление газов в цилиндре меняется незначительно. На рис. 8 приведены мгновенные значения относительного крутящего момента Mτ/Mср двигателя Стирлинга и дизельного двигателя за один оборот коленчатого вала [3].

Значительные трудности возникают при регулировании мощности двигателя Стирлинга. Изменение мощности, происходящее в результате изменения количества подаваемого в подогреватель топлива, незначительно. Более заметного результата можно добиться при изменении давления или количества рабочего тела. Этот способ регулирования мощности используется в автомобильном двигателе Стирлинга. Для уменьшения мощности часть газа из цилиндров перепускается в резервуар низкого давления; для увеличения мощности газ подается в цилиндры из резервуара высокого давления, куда он предварительно перекачивается специальным компрессором из резервуара низкого давления. У двигателей с поршнем двойного действия для снижения мощности газ перепускается из верхней части поршня в нижнюю через специальный канал. Переход от полной мощности к холостому ходу длится 0,2 с; обратный процесс занимает около 0,6 с.

Чтобы потери на трение газа при прохождении его через узкие каналы регенератора и радиатора были небольшими, применяют гелий, а также пытаются использовать водород. Для уменьшения размеров и массы четыре цилиндра с поршнями двойного действия в двигателе второго поколения размещаются как показано на рис. 9. Вместо коленчатого вала применен привод с помощью наклонных шайб. Наличие высокого давления газов по обе стороны поршня обеспечивает передачу на приводную шайбу только небольшой разницы давлений. Поскольку в двигателе Стирлинга вся отводимая теплота передается в охлаждающую жидкость, то радиатор этого двигателя должен быть в 2 раза больше, чем у обычных двигателей внутреннего сгорания.

Рис. 9. Четырехцилиндровый бесшатунный двигатель Стирлинга с поршнем двойного действия и вращающейся наклонной шайбой
Рис. 10. Четырехцилиндровый рядный двигатель Стирлинга с ромбическим кривошипно-шатунным механизмом

В качестве примера рассмотрим два автомобильных двигателя Стирлинга. Четырехцилиндровый двигатель первого поколения с ромбическим механизмом, изображенный на рис. 10, имеет диаметр цилиндра 77,5 мм, ход поршня 49,8 мм (рабочий объем 940 см3), развивает мощность 147 кВт при 3000 мин-1 и среднем давлении в цилиндре порядка 22 МПа. Температура головки цилиндра поддерживается около 700 °C, а охлаждающей жидкости — на уровне 60 °C. Масса сухого двигателя составляет 760 кг. Холодный пуск и прогрев двигателя до достижения температуры головки цилиндра 700 °C длятся около 20 с. При температуре воды 55 °C индикаторный КПД двигателя на испытательном стенде достиг 35 %. Удельная мощность 156 кВт/дм3, а удельная масса на единицу мощности 5,2 кг/кВт.

Схематический разрез двигателя Стирлинга второго поколения модели «Филипс 4-215 DA», предназначенного для легкового автомобиля, изображен на рис. 9. Двигатель имеет примерно такие же размеры и массу, как и обычный бензиновый двигатель, и его мощность равна 127 кВт. Четыре цилиндра с поршнями двойного действия расположены вокруг оси приводного вала с наклонной шайбой. Котел подогревателя, общий для всех четырех цилиндров, имеет одну форсунку. На автомобиле «Форд Торино» (США) расход топлива с этим двигателем был на 25 % ниже, чем с бензиновым V-образным 8-цилиндровым двигателем. Содержание NOx в отработавших газах системы подогрева благодаря применению их рециркуляции было намного меньше установленной нормы.

Диаметр цилиндра двигателя «Филипс 4-215 DA» — 73 мм, ход поршня 52 мм. Мощность двигателя 127 кВт при частоте вращения 4000 мин-1. Температура в подогревателе (температура головок цилиндров) равна 700 °C, а охлаждающей жидкости — 64 °C.

Рис. 11. Четырехцилиндровый V-образный двигатель Стирлинга фирмы «Юнайтед Стирлинг»:
1 — подогреватель; 2 — трубки подогревателя; 3 — теплообменник; 4 — генератор; 5 — радиатор.

Шведская фирма «Юнайтед Стерлинг» создала свой двигатель Стирлинга таким образом, чтобы можно было в наибольшей степени использовать детали, серийно выпускаемые автомобильной промышленностью. Используются обычный коленчатый вал и шатун, который совместно с крейцкопфом преобразует во вращательное движение вала поступательное движение поршня двойного действия. Разрез этого четырехцилиндрового V-образного двигателя изображен на рис. 11. Ряды цилиндров расположены под небольшим углом, головки цилиндров образуют общую группу, подогреваемую одной горелкой.

Предполагаемая удельная масса этого двигателя равна 2,4 кг/кВт, что можно сравнить с показателями очень хорошего малоразмерного высокооборотного дизеля. Удельная масса двигателей Стирлинга уменьшилась с 6,1–7,3 кг/кВт до 4,3 кг/кВт и постоянно снижается.

Производство двигателя Стирлинга требует технологии, совершенно отличной от технологии производства двигателей внутреннего сгорания, что будет тормозить его внедрение в производство. Однако разработки таких двигателей продолжаются, поскольку традиционные бензиновый и дизельный двигатели не будут отвечать перспективным требованиям необходимой чистоты отработавших газов, а созданные двигатели Стирлинга дают основание надеяться, что эту проблему удастся решить. Так как изменение давления газов в цилиндре двигателя Стирлинга носит плавный характер, то он работает стабильно и тихо, напоминая паровую машину. Однако большое количество отводимой теплоты требует новых решений в области систем охлаждения.

Большой прогресс в двигателях Стирлинга достигнут при создании двигателя «Филипс 4-215 DA». Двигатель предназначен для применения в легковых автомобилях и занимает в них столько же места, сколько и обычный бензиновый V-образный двигатель равной мощности. Масса двигателя «Филипс 4-215 DA» равна 448 кг и при максимальной мощности 127 кВт его удельная масса составляет 3,5 кг/кВт. Индикаторный КПД этого двигав теля при использовании е качестве рабочего тела водорода под давлением 20 МПа равен 35 %.

Холодный пуск двигателя длится 15 с, расход топлива автомобилем в условиях городского движения на 25 % меньше, чем в случае обычного бензинового двигателя. Регулирование мощности двигателя производится изменением количества и давления рабочего тела.

Плотность водорода в 14 раз ниже плотности воздуха, а его теплоемкость также в 14 раз выше теплоемкости воздуха. Это положительно сказывается на гидравлических потерях, особенно в регенераторе, и в целом ведет к росту КПД двигателя (см. рис. 4).

Опубликовано 24.03.2014

Читайте также

  • Вариатор — автомобильная коробка передач будущего?

    Вариатор — оптимальный способ изменения передаточного отношения между двигателем автомобиля и его колёсами. Экология и улучшенная конструкция могут сделать бесступенчатую трансмиссию (CVT) системой переключения передач будущего.

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 22 — 23 (книга есть в библиотеке сайта). – Прим. icarbio.ru
  2. ↺ В настоящий момент двигатели Стирлинга используются на солнечных электростанциях. – Прим. icarbio.ru
  3. ↺ В книге – опечатка либо дизельный, либо бензиновый двигатель. – Прим. icarbio.ru

Комментарии

Машина Стирлинга — это… Что такое Машина Стирлинга?

Все языкиАнглийскийРусскийКитайскийНемецкийФранцузскийИспанскийШведскийИтальянскийЛатинскийФинскийКазахскийГреческийУзбекскийВаллийскийАрабскийБелорусскийСуахилиИвритНорвежскийПортугальскийВенгерскийТурецкийИндонезийскийПольскийКомиЭстонскийЛатышскийНидерландскийДатскийАлбанскийХорватскийНауатльАрмянскийУкраинскийЯпонскийСанскритТайскийИрландскийТатарскийСловацкийСловенскийТувинскийУрдуФарерскийИдишМакедонскийКаталанскийБашкирскийЧешскийКорейскийГрузинскийРумынский, МолдавскийЯкутскийКиргизскийТибетскийИсландскийБолгарскийСербскийВьетнамскийАзербайджанскийБаскскийХиндиМаориКечуаАканАймараГаитянскийМонгольскийПалиМайяЛитовскийШорскийКрымскотатарскийЭсперантоИнгушскийСеверносаамскийВерхнелужицкийЧеченскийШумерскийГэльскийОсетинскийЧеркесскийАдыгейскийПерсидскийАйнский языкКхмерскийДревнерусский языкЦерковнославянский (Старославянский)МикенскийКвеньяЮпийскийАфрикаансПапьяментоПенджабскийТагальскийМокшанскийКриВарайскийКурдскийЭльзасскийАбхазскийАрагонскийАрумынскийАстурийскийЭрзянскийКомиМарийскийЧувашскийСефардскийУдмурдскийВепсскийАлтайскийДолганскийКарачаевскийКумыкскийНогайскийОсманскийТофаларскийТуркменскийУйгурскийУрумскийМаньчжурскийБурятскийОрокскийЭвенкийскийГуараниТаджикскийИнупиакМалайскийТвиЛингалаБагобоЙорубаСилезскийЛюксембургскийЧерокиШайенскогоКлингонский

 

Все языкиРусскийАнглийскийДатскийТатарскийНемецкийЛатинскийКазахскийУкраинскийВенгерскийТурецкийТаджикскийПерсидскийИспанскийИвритНорвежскийКитайскийФранцузскийИтальянскийПортугальскийАрабскийПольскийСуахилиНидерландскийХорватскийКаталанскийГалисийскийГрузинскийБелорусскийАлбанскийКурдскийГреческийСловенскийИндонезийскийБолгарскийВьетнамскийМаориТагальскийУрдуИсландскийХиндиИрландскийФарерскийЛатышскийЛитовскийФинскийМонгольскийШведскийТайскийПалиЯпонскийМакедонскийКорейскийЭстонскийРумынский, МолдавскийЧеченскийКарачаевскийСловацкийЧешскийСербскийАрмянскийАзербайджанскийУзбекскийКечуаГаитянскийМайяАймараШорскийЭсперантоКрымскотатарскийОсетинскийАдыгейскийЯкутскийАйнский языкКхмерскийДревнерусский языкЦерковнославянский (Старославянский)ТамильскийКвеньяАварскийАфрикаансПапьяментоМокшанскийЙорубаЭльзасскийИдишАбхазскийЭрзянскийИнгушскийИжорскийМарийскийЧувашскийУдмурдскийВодскийВепсскийАлтайскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийЛожбанБашкирскийМалайскийМальтийскийЛингалаПенджабскийЧерокиЧаморроКлингонскийБаскскийПушту

ИЗУЧЕНИЕ РАБОТЫ ДВИГАТЕЛЯ СТИРЛИНГА

ИЗУЧЕНИЕ РАБОТЫ ДВИГАТЕЛЯ СТИРЛИНГА

Аксенова Н. В. 1Кочнева Л.С. 1

1

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Движение – это жизнь. С древнейших времен люди нуждались в силе, которая приводила бы в действие различные приспособления для облегчения ручного труда. Сегодня люди используют в своей жизни различные источники энергии: невозобновляемые и возобновляемые. Развитие альтернативных источников энергии необходимо для экономии топливно-энергетических ресурсов и снижения негативного влияния на окружающую среду.

Меня заинтересовала тема двигателей, которые работают на альтернативных источниках энергии. В прошлом году предметом моего исследования были паровые двигатели. Я узнал историю происхождения этих двигателей, как они устроены, каков принцип их работы. Мною были сконструированы две модели лодочек с простейшими паровыми двигателями. Я решил продолжить узнавать новое в этой теме.

При изучении литературы мое внимание привлекла статья о двигателе Стирлинга. Большой интерес к нему со стороны науки вызван актуальностью вопросов ухудшения экологической обстановки, а также борьбы с шумом. Способность производить электричество из возобновляемых ресурсов делает двигатель Стирлинга машиной чистого будущего мира. Он интересен тем, что работает от разницы температур. Например, при помощи такого двигателя можно зарядить мобильный телефон от тепла человеческого тела или кружки кипятка; можно, используя разницу температур между колодезной водой и воздухом, снабдить электричеством загородный дом.

Я решил больше узнать об этом двигателе, выяснить, как он работает, где используется.

Я предположил,что если двигатели Стирлинга работают от разницы температур, то они будут работать как от тепла, так и от холода.

Цель работы: исследование принципа работы двигателя Стирлинга и его наглядная демонстрация на примере действующей модели.

Для достижения цели были поставлены следующие задачи:

1. изучить историю появления двигателей;

2. узнать, как работает двигатель Стирлинга;

3. изготовить модель двигателя Стирлинга самостоятельно;

4. пронаблюдать, как работает двигатель от разницы температур;

Объект исследования: двигатель Стирлинга.

Предмет исследования: принцип и условия работы двигателя Стирлинга.

Для подтверждения гипотезы буду использовать следующие методы:

  • эксперимент;

  • моделирование;

  • демонстрация работы двигателя;

  • замеры оборотов двигателя;

  • анализ полученных данных.

Глава 1. Теоретическая часть

1.1. Виды двигателей

Самым первым двигателем было простое водяное колесо. На колесе крепились лопатки, оно опускалось в реку, и течение воды приводило его в движение. Прикрепив к колесу различные механизмы, люди выполняли всевозможные работы: орошали поля, мололи зерно, ковали металл.

Позднее были придуманы ветряные двигатели. К небольшому колесу крепились огромные деревянные крылья. Они вращались под действием ветра и приводили в движение мельничные жернова. Ветряные мельницы можно встретить и в наше время.

Ветряным и водяным двигателям не требуется топливо. Они очень экономичные. Их приводят в действие силы природы, от которых они и зависят. В этом их недостаток. (рис. 1)

В отличие от водяных и ветряных двигателей, их «наследники» — паровые двигатели, являются более независимыми. В паровой машине имеются печь и котел. Печь топится дровами и углем и нагревает котел с водой. Вода закипает и превращается в пар. Он и приводит в движение механизмы. Изобретение парового двигателя способствовало развитию промышленности. Заработали паровые станки, паровозы, пароходы.

Однако паровая машина тоже имела недостаток: она была слишком велика и прожорлива. (рис. 2)

Изобретатели сконструировали новый двигатель. Топливо в нем сгорает не в печи, а внутри самого двигателя. Его так и назвали — двигатель внутреннего сгорания. Он экономичнее и сильнее, меньше и легче паровой машины, потому что не имеет котла. Двигатели внутреннего сгорания сейчас используются в автомобилях, самолетах, тепловозах, теплоходах и других машинах.

В повседневной деятельности человеку чаще всего приходится сталкиваться с двигателями внутреннего сгорания. (рис. 3)

Но существует также особый класс энергетических установок, имеющих общее название двигателей внешнего сгорания. Когда для бурно развивающейся промышленности понадобились мощные и экономичные энергетические установки, конструкторы придумали замену взрывоопасным паровым двигателям. В двигателях внешнего сгорания процесс сжигания топлива и источник теплового воздействия отделены от рабочей установки. К данной категории обычно относят паровые и газовые турбины, а также двигатели Стирлинга. Первые модели подобных установок были сконструированы более двух веков назад и применялись на протяжении почти всего XIX столетия. Только через несколько десятков лет им на смену пришли двигатели внутреннего сгорания. Стоили они существенно дешевле, что и определило их широкое распространение.

Но сегодня конструкторы все пристальнее присматриваются к вышедшим из широкого употребления двигателям внешнего сгорания. Главное их достоинство состоит в том, что такие установки не нуждаются в хорошо очищенном и дорогом топливе и не наносят вред окружающей среде. [3]

Изучив историю возникновения двигателей, мы узнали, что люди всегда нуждались в двигательной силе. Прогресс не стоял на месте, и двигатели постоянно усовершенствовались. Наиболее распространенные в настоящее время двигатели внутреннего сгорания имеют ряд существенных недостатков: их работа сопровождается шумом, они выделяют вредные отработавшие газы и потребляют много топлива. Сегодня конструкторы все чаще обращаются к новым технологиям и идеям, связанным с альтернативными источниками энергии. И здесь особенно интересны двигатели Стирлинга, которые имеют ряд преимуществ.

1.2. Двигатель Стирлинга и принцип его работы

Один из самых известных представителей семейства двигателей внешнего сгорания – машина Стирлинга. Она была придумана в 1816 году шотландским священником Робертом Стирлингом, неоднократно совершенствовалась, но впоследствии на долгое время была незаслуженно забыта. (рис.4)

Теперь же двигатель Стирлинга получил второе рождение. На сегодняшний день, он применяется во многих областях деятельности человека. Его используют как универсальный источник электроэнергии, в качестве насосов, в холодильных системах, на подводных лодках, на космических спутниках и др. Именно по этой причине, двигатель Стирлинга сейчас является универсальным устройством для выполнения любого рода задач. [2] (рис. 5)

Попробуем разобраться, что собой представляет двигатель Стирлинга, как он устроен и какой физический принцип лежат в основе его работы.

Двигатели Стирлинга работают от разницы температур. При низкой температуре идет сжатие воздуха, а при высокой – его расширение. У всех Стирлингов есть холодная и горячая сторона, в которых происходит нагрев и охлаждение воздуха. Воздух нагревается в горячей области, расширяясь, он толкает поршень и перемещается в холодную часть двигателя, где сжимается, после чего снова перемещается в горячую область двигателя, чтобы в очередной раз толкнуть поршень. Тепло к рабочему телу при этом подводится с внешней стороны, через стенку цилиндра. Эта особенность и дает право машине Стирлинга называться двигателем внешнего сгорания. [1] (рис. 6)

Двигатель, сделанный по принципу Стирлинга, обладает рядом полезных преимуществ. Они могут работать от любого перепада температур: например, между разными слоями в океане, от солнца, от угольной или дровяной печи и т. д. Преимуществом является и простота конструкции. Для постройки такого двигателя, необходим самый минимум систем. Он запускается самостоятельно и не нуждается в стартере. Простота конструкции позволяет Стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы. Еще одной важной особенностью таких двигателей является бесшумность работы. Так как в них отсутствуют выхлопы, то вся работа выполняется практически бесшумно. Преимуществом двигателя Стирлинга является и его экологичность. Внутри двигателя отсутствуют компоненты, которые могли бы существенно загрязнять окружающую среду, чего не скажешь о двигателях внутреннего сгорания.

Но идеальных механизмов не существует. Самым основным недостатком двигателя Стирлинга, является его громоздкость. Как и любой двигатель, он нуждается в охлаждении, а это сулит установкой большего количества радиаторов, что существенно увеличивает массу всей конструкции. [5]

Изучив литературу по теме «Двигатели Стирлинга», мы поняли основной принцип его работы. Он заключается в постоянно чередуемых температурах: нагревании и охлаждении. Двигатель имеет две пластины, между которыми находится воздух. При помощи нагрева или охлаждения одной из них создается разница температур. Воздух внутри то расширяется, то сжимается, совершая при этом работу. Также мы рассмотрели основные преимущества и недостатки двигателя Стирлинга и выяснили, что преимуществ гораздо больше.

Глава 2. Исследовательская часть

2. 1. Создание действующей модели двигателя Стирлинга

Двигатель Стирлинга можно изготовить в домашних условиях из подручных материалов. Интернет-ресурсы предлагают различные схемы сборки таких двигателей, с пошаговыми инструкциями, достаточно простыми в исполнении. [4] Однако собрать работающий двигатель Стирлинга оказалось непросто.

Сначала была создана первая модель двигателя Стирлинга. Для изготовления понадобились следующие материалы:

  • консервная банка;

  • металлическая крышка;

  • небольшой кусок поролона;

  • цилиндр от шприца;

  • СД-диск;

  • два болтика;

  • скрепки;

  • пакет;

  • резинка;

  • холодная сварка;

  • силиконовый клей;

Инструменты:

  • кусачки;

  • плоскогубцы;

  • ножницы;

  • паяльник;

  • наждачная бумага;

  • клеящий пистолет;

Далее следовали четко по инструкции, выпо

Как работают двигатели Стирлинга?

Реклама

Криса Вудфорда. Последнее изменение: 10 апреля 2020 г.

Двигатели работают в нашем мире с Промышленная революция: сначала грязные паровые машины, работающие на угле, затем более чистые и эффективные бензиновые двигатели, а в последнее время реактивные двигатели в самолетах. Основная концепция двигателя — то, что использует разницу между высокой и низкой температурой. один — не изменился за пару сотен лет, хотя иногда люди все же придумывают небольшие улучшения, которые сделайте процесс немного быстрее или эффективнее.Один двигатель ты возможно, в последнее время много слышал о двигателе Стирлинга, что немного похоже на паровой двигатель, который не использует пар! Вместо этого он нагревает, охлаждает и перерабатывает тот же воздух или газ в снова, чтобы произвести полезную мощность, которая может управлять машиной. В команде Благодаря солнечной энергии и другим новым технологиям, двигатели Стирлинга кажутся передовыми технологиями, но на самом деле они существуют с 1816 года. Давайте подробнее рассмотрим, как они работают!

Фото: Двигатели Стирлинга становятся все более популярными для использования Возобновляемая энергия.На этом фото вы можете увидеть массив зеркал. концентрация солнечного тепла на двигателе Стирлинга, вырабатывающем электричество. Двигатель Стирлинга установлен на крайнем правом рычаге. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии).

Что такое двигатель?

Двигатели транспортных средств или заводских машин являются примерами того, что ученые называют тепловыми двигателями. Они горят богатое энергией топливо (уголь, бензин или что-то еще) для выпуска тепловая энергия, которая используется для производства газ расширяется и охлаждается, толкает поршень, поверните колесо и заведите машину.Двигатели бывают двух основных типов: двигатели внешнего сгорания (например, паровые двигатели) горят топливо в одном месте и выработка энергии в другой части такая же машина; двигатели внутреннего сгорания (например, автомобильные) сжигать топливо и производить мощность в одном и том же месте (в автомобиле все происходит в сверхпрочных металлических цилиндрах). И то и другое типы двигателей полагаются на тепловую энергию, заставляя газ расширяться, а затем остыть. Чем больше разница температур (между газом при самый горячий и самый холодный), тем лучше работает двигатель.Теория того, как двигатель работает на основе науки термодинамики (буквально «как движется тепло») и теоретической модели того, как идеальные двигатели расширяются, сжимаются, нагреваются и охлаждаются. газ в серии шагов, называемых циклом.

Хорошие и плохие двигатели

Прежде, чем мы узнаем, что такого хорошего Двигатели Стирлинга, это помогает, если мы знаем, что такого плохого Паровые двигатели. Как они работают? У вас есть угольный огонь, который нагревает вода, пока она не закипит и не станет паром. Пар движется по трубе к цилиндру через открытый входной клапан, где он толкает поршень и водит колесо.Затем входной клапан закрывается, а выходной клапан открывается. Импульс колеса заставляет поршень вернуться в цилиндр, где он выталкивает охлажденный нежелательный пар через выход и прочь вверх по дымовой трубе (трубе).

Фото: Паровозы, такие как у этого локомотива, являются примерами. двигателей внешнего сгорания. Огонь, который обеспечивает энергию за счет горения (1), находится снаружи (вне) цилиндр, в котором тепловая энергия превращается в механическую энергию (3).Между ними есть бойлер (2), преобразующий тепловую энергию в пар. Пар действует как теплоноситель, толкая поршень (4), который перемещает колеса с помощью кривошипа (5) и приводит в движение поезд (6). Пар и тепловая энергия постоянно выбрасывается из дымовой трубы (7), что делает этот способ питания движущейся машины особенно неэффективным и неудобным. Но это было нормально в те дни, когда угля было в изобилии, и никого не волновало нанесение ущерба планете.

Проблем со steam много двигателей, но вот четыре наиболее очевидных.Во-первых, котел что заставляет пар работать под высоким давлением, и есть риск что он может взорваться (взрывы котла были серьезной проблемой с очень ранней паровой двигатели). Во-вторых, котел вообще какой-то расстояние от цилиндра, поэтому энергия теряется на получение тепла от один к другому. В-третьих, пар, выходящий из дымовой трубы, все еще довольно горячий, поэтому он содержит потраченную впустую энергию. В-четвертых, потому что пар выбрасывается из цилиндр каждый раз, когда поршень толкает, двигатель должен потреблять огромные количества воды, а также топлива.(Вот почему у паровозов постоянно останавливаться у бортовых цистерн с водой.)

Что такое двигатель Стирлинга?

Можем ли мы разработать двигатель, который преодолеет эти проблемы? Предположим, мы избавимся от котла (что решит риск взрыва) и использовать тепло от огня для питания двигатель напрямую. Тогда вместо использования пара для передачи тепловой энергии от огня к цилиндру, почему бы не поставить цилиндр ближе к огонь и используйте обычный воздух (или другой простой газ) для перемещения тепла энергия между ними? (Вот почему двигатели Стирлинга иногда называется тепловоздушные двигатели .) Если мы закроем этот воздух в закрытую трубу, тот же воздух движется вперед и назад снова и снова, собирая энергию от огня и выпуская его в баллон, решаем проблему двигателя, нуждающегося в постоянной подаче воды. Наконец, почему бы и нет добавить какой-нибудь теплообменник, чтобы горячий воздух проходил обратно и далее, его энергия сохраняется внутри машины и перерабатывается в повысить общую эффективность. Это основные способы, которыми Двигатель Стирлинга — усовершенствованный паровой двигатель.Вы иногда увидите Двигатели Стирлинга описываются как «замкнутый цикл регенеративного тепла». двигателей «, что является очень кратким выражением того, что мы только что сказали: замкнутый цикл означает, что они используют запечатанный объем газа для отвода тепла обратно и вперед, снова и снова, через серию бесконечно повторяющихся шагов; регенеративный просто означает, что они используйте теплообменники, чтобы сохранить часть тепла, которое в противном случае теряться в каждом цикле (бесполезно взорваться в дымовую трубу, как в паровом двигателе).

Простой или сложный?

Некоторые говорят, что двигатели Стирлинга просты.Если это правда, то это так же, как и великие уравнения физики (например, E = mc2) просты: они просты на поверхности, но более богатые, более сложные и потенциально очень запутанные, пока вы их действительно не разберетесь. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: много очень плохих видео на YouTube покажите, как легко их «объяснить» очень неполным и неудовлетворительным образом. На мой взгляд, вы не можете понять двигатель Стирлинга, просто построив его или наблюдая за тем, как он работает снаружи: вам нужно хорошо подумать о цикле шагов, которые он проходит, о том, что происходит с газом внутри, и чем это отличается от того, что происходит в обычном паровом двигателе.

В любом случае, давайте посмотрим, сможем ли мы правильно объяснить двигатель Стирлинга, сначала посмотрев на компоненты, которые он содержит, затем подумайте о том, что они делают, и, наконец, посмотрим на более сложную (термодинамическую) теорию.

Фото: Маленькие компактные двигатели Стирлинга, подобные этому, могут работать от крошечных перепады тепла — даже если положиться на чьи-то руки и отвести тепло, которое они содержат. Фото любезно предоставлено Исследовательским центром Гленна НАСА.

Каковы основные части двигателя Стирлинга?

Существует довольно много различных конструкций двигателей Стирлинга, и мы рассмотрим один конкретный тип, известный как вытеснительный двигатель Стирлинга (также известный как бета-двигатель Стирлинга).Это ключевые части:

Источник тепла

Источник тепла — это источник энергии, от которого двигатель получает всю свою энергию, и это может быть что угодно, например, уголь. огонь в солнечное зеркало, концентрирующее тепло Солнца (как на нашем верхнем фото). Хотя двигатели Стирлинга описываются как двигатели внешнего сгорания, они не должны вообще использовать сжигание (фактическое сжигание топлива): они просто нужна разница в температуре источника тепла (откуда берется энергия) и радиатор (где он попадает).

Вы можете управлять маленьким двигателем Стирлинга с теплом от чашки кофе, теплая ладонь чьей-то руки или даже (к полному изумлению многих) кубик льда: энергия, которую выделяет двигатель, исходит от любой разницы в температуре между источником тепла и теплом тонуть. Сказав это, стоит помнить, что с крошечным двигателем Стирлинга, приводимым в движение что-то вроде чашки кофе, просто потому, что он содержит относительно небольшое количество энергии, которая очень быстро расходуется.

Иллюстрация: Основные части вытеснительного двигателя Стирлинга.

Газ

Внутри машины в закрытом баллоне постоянно находится объем газа. Это может быть обычный воздух, водород, гелий или другое легкодоступное вещество, которое остается газом, поскольку он нагревается и охлаждается в течение полного цикла двигателя (повторяющаяся серия операции, через которые он проходит). Его единственная цель — переместить тепловую энергию от источника тепла к радиатору, приводя в действие поршень, который приводит в движение машину, а затем снова вернуться к подобрать еще.Газ, передающий тепло, иногда называют рабочим телом.

Радиатор

Место, где горячий газ охлаждается перед возвратом в источник тепла. Это обычно какой-то радиатор (кусок металла с прикрепленными ребрами), который отводит отработанное тепло в атмосферу.

Поршни

Существуют различные типы двигателей Стирлинга, но я считаю, что все они имеют два поршня — это один из более очевидных вещей, которые отличает их от других двигателей.В общей конструкции под названием двухпоршневой (или альфа) двигатель Стирлинга, есть два одинаковых поршня и цилиндра, а газовые челноки назад и вперед между ними, нагревание и расширение, затем охлаждение и сжатие, прежде чем цикл повторится.

В другой конструкции, показанной здесь, называемой объемным (или бета) двигателем Стирлинга, есть один полностью внутренний поршень, называемый вытеснителем (зеленого цвета), задача которого заключается в перемещении газа между источником тепла и радиатором. В отличие от обычного поршня парового двигателя, буйковый уровень устанавливается очень свободно (с небольшим пространством между край поршня и стенка цилиндра), и газ обтекает его снаружи, когда он движется вперед и назад.Также есть рабочий поршень (темно-синего цвета), который плотно входит в цилиндр и превращает расширение газа в полезную работу, которая приводит в движение независимо от того, какой двигатель работает. В более крупных двигателях Стирлинга рабочий поршень обычно имеет тяжелый маховик прикреплен для наращивания импульс и поддерживать бесперебойную работу машины. Рабочий поршень и поршень буйка постоянно движутся, но они не совпадают (одна четверть цикла или 90 ° по фазе) друг с другом; они приводятся в действие одним и тем же колесом, но поршень буйка всегда на одну четверть цикла (90 °) опережает рабочего поршня.

Теплообменник

Также известный как регенератор, теплообменник находится в закрытой камере между источником тепла и радиатором. Когда горячий газ проходит мимо регенератора, он отдает часть своего тепла, за которую держится регенератор. Когда газ движется обратно, он снова улавливает это тепло. Без регенератора это тепло было бы потеряно в атмосферу и впустую. Теплообменник значительно повышает эффективность и мощность двигателя. Некоторые двигатели Стирлинга иметь несколько теплообменников.

Как работает двигатель Стирлинга?

Итого

Как паровой двигатель или двигатель внутреннего сгорания, Стирлинг двигатель преобразует тепловую энергию в механическую энергию (работу), повторяя серия основных операций, известная как ее цикл. Рассмотрим упрощенный двигатель Стирлинга буйкового типа. На самом деле это довольно запутанно и трудно понять, пока вы не поймете, что происходит именно из-за газ внутри попеременно расширяется и сжимается, а в промежутках перемещается от горячей стороны цилиндра к холодной и обратно.Работа темно-синего рабочего поршня состоит в том, чтобы использовать энергию расширения газа для приведения в действие механизма, приводимого в действие двигателем, а затем сжимать газ, чтобы цикл мог повторяться. Работа зеленого поршня буйка заключается в перемещении газа от горячей стороны цилиндра (слева) к холодной стороне (справа) и обратно. Работая в команде, два поршня гарантируют, что тепловая энергия многократно перемещается от источника к раковине и преобразуется в полезную механическую работу.

Подробнее

  1. Охлаждение и сжатие: Большая часть газа (показана синими квадратами) заканчивается справа в более холодном конце цилиндра.Когда он охлаждается и сжимается, отдавая часть своего тепла, которое отводится радиатором, оба поршня перемещаются внутрь (к центру).
  2. Передача и регенерация: Поршень буйка перемещается вправо, а охлажденный газ перемещается вокруг него в более горячую часть цилиндра слева. Объем газа остается постоянным, когда он проходит обратно через регенератор (теплообменник), чтобы забрать часть тепла, которое он ранее выделял.
  3. Нагрев и расширение: Большая часть газа (показана красными квадратами) теперь находится слева в горячем конце цилиндра.Он нагревается огнем (или другим источником тепла), поэтому его давление повышается, и он расширяется, поглощая энергию. Когда газ расширяется, он толкает рабочий поршень вправо, который приводит в движение маховик и все, что приводит в действие двигатель. В этой части цикла двигатель преобразует тепловую энергию в механическую (и работает).
  4. Передача и охлаждение: Поршень буйка перемещается влево, а горячий газ перемещается вокруг него к более холодной части цилиндра справа. Объем газа остается постоянным, когда он проходит через регенератор (теплообменник), отдавая часть своей энергии по пути.Теперь цикл завершен и готов к повторению.

Хотя двигатель проходит цикл, возвращаясь в исходное положение, это не симметричный процесс: энергия постоянно отводится от источника и откладывается в приемнике. Это происходит потому, что горячий газ объем работы на рабочем поршне, когда он расширяется, но поршень выполняет меньше работы, сжимая охлажденный газ и возвращая его в исходное положение.

Теоретически

Теперь вы можете подумать: «Это все очень сложно! Зачем возиться с двумя поршнями, если простой паровой двигатель может обойтись только одним? Почему все эти отдельные ступени? Почему бы не упростить все это?» Чтобы правильно ответить на эти вопросы, вам необходимо понять теорию двигателей: эффективный двигатель перемещает газ через цикл процессов в соответствии с законами газа (основные законы классической физики, которые описывают, как давление, объем и температура газа относятся к).Наиболее известный идеализированный цикл называется циклом Карно и включает в себя повторение цикла изотермического (постоянная температура) и адиабатического (сохранение тепла) расширения, за которым следует изотермическое и адиабатическое сжатие.

Двигатель Стирлинга использует другой цикл, который (в идеале) состоит из:

  1. Изотермическое (при постоянной температуре) сжатие: наш этап (1) выше, где объем газа уменьшается, а давление увеличивается, поскольку он отдает тепло в сток.
  2. Изометрический (постоянный объем) нагрев: наш этап (2), описанный выше, на котором объем газа остается постоянным, поскольку он проходит обратно через регенератор и восстанавливает часть своего предыдущего тепла.
  3. Изотермическое (при постоянной температуре) расширение: наш этап (3) выше, на котором газ поглощает энергию из источника, его объем увеличивается, а его давление уменьшается, в то время как температура остается постоянной.
  4. Изометрическое (постоянный объем) охлаждение: наш этап (4) выше, на котором объем газа остается постоянным, когда он проходит через регенератор и охлаждается.

Настоящий двигатель Стирлинга работает по более сложной, менее идеальной версии этого цикла, которая выходит за рамки данной статьи. Достаточно просто отметить, что четыре этапа не разделены жестко, а сливаются друг с другом. Если вам интересно, об этом можно прочитать в статье Википедии о цикле Стирлинга.

Некоторые альтернативные анимации

  • В Википедии есть еще одна анимация двигателя Стирлинга бета-типа (хотя и красиво нарисован, за ним трудно следить, потому что этапы рядом не поясняются).
  • MIT также имеет приятную небольшую анимацию, но сопровождающее объяснение довольно минимально.
  • Лучшее из всех: на сайте есть отличная анимация и объяснение. Animated Engines — отличный веб-сайт с множеством понятных и простых страниц, посвященных всем другим движкам, которые стоит изучить. Мне нравится, что все движки выполнены в одном простом стиле, поэтому вы можете легко их сравнить.

Для чего можно использовать двигатели Стирлинга?

Фото: хотя инженеры пытались установить на автомобили двигатели Стирлинга, эксперименты не увенчались успехом.Двигателю Стирлинга нужно время, чтобы набрать скорость, и он не справляется с остановкой и запуском, что делает его менее подходящим для питания автомобиля чем обычный двигатель внутреннего сгорания. Мы вряд ли увидим дальнейший прогресс на этом направлении: автомобили будущего, скорее всего, будут приводиться в действие электродвигателями или топливными элементами. Фото любезно предоставлено Исследовательским центром Гленна НАСА.

Двигатели Стирлинга лучше всего работают в машинах, требующих непрерывно производить энергию, используя разницу между чем-то горячее и что-то холодное.Они идеально подходят для солнечных электростанций, где тепло Солнца играет на зеркале, которое действует как источник тепла, и высокоэффективные теплоэлектроцентрали (ТЭЦ), которые должны обеспечивать стабильные поставки электроэнергии. Недавно пионер Segway Дин Камен помог возродить интерес к двигателям Стирлинга. используя их как основу для компактной домашней электросети генератор, называемый Beacon 10, примерно размером с бытовую стиральную машину.

В нормальном двигателе Стирлинга тепло нагревается до горячий конец машины (источник тепла) и получить механическую работу и меньше тепла от другого, более холодного конца (радиатора).Как только электродвигатели могут быть реверсивно использованы как генераторы, поэтому вы можете поставить энергии в двигатель Стирлинга и запустить его назад, эффективно отвод тепла от радиатора и отвод его на источник. Это превращает двигатель Стирлинга в «криокулер» — очень эффективное охлаждающее устройство. Охладители двигателя Стирлинга используются в сверхпроводимость и электронное исследование.

Преимущества и недостатки двигателей Стирлинга

Самым большим преимуществом двигателей Стирлинга является то, что они намного эффективнее паровых двигателей (в основном из-за замкнутый цикл и регенеративный теплообменник).У них нет котлы, которые могут взорваться, не нуждаются в воде и не имеют сложную систему открытия и закрытия клапанов, двигатели требуют. Это одна из причин, почему они намного тише паровых двигателей, и потому что они не обязательно предполагают сжигание топлива, они могут быть намного чище. В отличие от паровых двигателей, которые обычно сжигают уголь до кипения воды, двигатели Стирлинга могут работать от всех видов разные виды топлива.

С другой стороны, двигатели Стирлинга запускаются не мгновенно (это требуется время, чтобы очень важный теплообменник нагрелся, а маховик разгоняются), и они не так хорошо работают в режиме остановки-запуска (в отличие от внутреннего сгорания двигатели).Им также нужны большие радиаторы, способные отводить отработанное тепло, что делает их непригодными для некоторых приложений.

Кто изобрел двигатели Стирлинга?

Изображение: Эта иллюстрация оригинального двигателя Роберта Стирлинга (на основе его патента 1827 г.) напоминает обычный паровой двигатель, но он более сложен. Два больших чугунные «воздушные сосуды» слева горячие внизу и холодные вверху (источник тепла и радиатор) и поршни буйка перемещаются внутри них вперед и назад.Сзади можно увидеть рабочий поршень и маховик. Произведение искусства из истории и прогресса парового двигателя Галлоуэя и Хеберта. Томас Келли, 1832 г., стр. 667.

Неудивительно, что Стирлинг двигатели были изобретены шотландским священником по имени Роберт Стирлингом в 1816 году. Он надеялся создать более безопасный двигатель и эффективнее паровых двигателей, которые были разработаны около века назад Томас Ньюкомен (а позже улучшил Джеймсом Ваттом и другими). Рост объемов внутреннего сгорания (бензиновые и дизельные двигатели) привел к Двигатели Стирлинга были отключены, хотя они были заново открыты Компания Philips в середине 20 века.Совсем недавно они становятся популярными на солнечных электростанциях и других формах возобновляемых источников энергии. энергии, где ценится их более высокая эффективность. Технология получил новый импульс в 1980-х, когда Иво Колин из Университета Загреба и Джеймс Сенфт из Университета Висконсина разработали новый, очень компактная конструкция двигателя Стирлинга, который может производить мощность с небольшими различиями между источник тепла и радиатор.

Узнать больше

На сайте

Статьи

Книги

Двигатели Стирлинга
Термодинамика двигателя
  • Двигатели: Введение Джона Лиска Ламли.Cambridge University Press, 1999. Хотя здесь основное внимание уделяется двигателям внутреннего сгорания, это будет интересно, если вы ищете термодинамический подход к анализу двигателей.
  • «Термодинамика для чайников» Майка Паукена. Джон Вили и сыновья. Простое введение в теорию термодинамики и ее практическое применение в таких вещах, как двигатели.

Видео

  • Пример двигателя Стирлинга: 2-минутная демонстрация реального двигателя Стирлинга бета-типа, подобного показанному в моей анимации выше.
  • Двигатель Стирлинга: разбираем один: Дэн Рохас разбирает двигатель Стирлинга и показывает различные детали внутри. Это видео станет еще более понятным, если вы поймете теорию двигателей Стирлинга.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012) Двигатели Стирлинга. Получено с https://www.explainthatstuff.com/how-stirling-engines-work.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Двигатель Стирлинга

Двигатель Стирлинга был изобретен в 1816 году преподобным Робертом Стирлингом, который стремился создать более безопасную альтернативу паровым двигателям, котлы которых часто взрывались из-за высокого давления пара и ограничений примитивных материалов, доступных в то время.Как и другие тепловые двигатели, двигатель Стирлинга преобразует тепловую энергию в механическую. Однако существенные особенности двигателя Стирлинга заключаются в том, что это двигатель внешнего сгорания с замкнутым циклом. Это означает, что в нем используется фиксированное количество рабочей жидкости, обычно воздуха, но могут использоваться и другие газы, заключенные в герметичный контейнер, а тепло, потребляемое двигателем, передается извне. Это позволяет двигателю работать практически от любого источника тепла, включая ископаемое топливо, горячий воздух, солнечную, химическую и ядерную энергию.Он также может работать с очень низкими перепадами температур, до 7 ° C, между источником тепла и радиатором, так что он может работать от тепла тела и даже пара от чашки кофе.

Поскольку он может использовать тепло от постоянного пламени и не зависит от взрывов, как в двигателе внутреннего сгорания, двигатель работает бесшумно.

На приведенной выше схеме показаны три альтернативных источника тепла, которые обычно используются в электроэнергетике.

Принцип работы

Двигатель Стирлинга основан на свойстве газов: они расширяются при нагревании и сжимаются при охлаждении. (Закон Чарльза). Если газ содержится в фиксированном объеме, его давление будет увеличиваться при нагревании и уменьшаться при охлаждении.

Если газ находится в контейнере переменного объема, состоящем из подвижного поршня в цилиндре, закрытом с одного конца, давление увеличивается и уменьшается, заставляя поршень двигаться наружу и внутрь.Повторяющиеся нагрев и охлаждение вызовут возвратно-поступательное движение поршня, которое можно преобразовать во вращательное движение с помощью обычного шатуна и коленчатого вала с маховиком.

К сожалению, скорость, с которой можно изменять температуру газа путем нагрева и охлаждения цилиндра, ограничена большой теплоемкостью практических поршней и цилиндров. Однако эту проблему можно решить, поддерживая на одном конце цилиндра постоянную высокую температуру, а на другом конце — постоянную холодную температуру и перемещая газ от одного конца цилиндра к другому.Это достигается с помощью поршня с неплотной посадкой, известного как вытеснитель, который перемещается вперед и назад внутри цилиндра, таким образом перемещая газ от одного конца к другому. При перемещении буйка газ выходит из зазора между буйком и стенкой цилиндра. Вытеснитель сам по себе не производит энергии и использует достаточно энергии только для циркуляции газа в цилиндре. Мощность извлекается из тепловой системы за счет изменения объема / давления газа на холодном конце цилиндра, чтобы толкать отдельный «силовой поршень» вперед и назад.Возможно множество различных конфигураций поршня и буйка, и ниже приведены примеры, иллюстрирующие наиболее распространенные типы.

Эффективность преобразования

Теоретический КПД двигателя Стирлинга η определяется законом Карно следующим образом:

η = (T h — T c ) / T h или η = 1 — T c / T h

Где T c — температура газа, когда он холодный, а T h — температура газа, когда он горячий.

Изготовлены практические двигатели с КПД 50%. Это вдвое выше типичного КПД двигателя внутреннего сгорания, который имеет большие потери на перекачивание и воздушный поток в двигателе, а также потери тепла через выхлопные газы и систему охлаждения.

См. Также Тепловые двигатели

Доступная мощность

Хотя двигатель обладает высокой эффективностью преобразования энергии, он, к сожалению, имеет низкую удельную мощность, поскольку она довольно велика для производимой мощности, и это ограничивает диапазон его использования приложениями с низким энергопотреблением.Удельная мощность может быть увеличена за счет использования более высокого давления газа и альтернативных рабочих газов для увеличения теплоемкости газа. См. Приложения ниже.

Типы двигателей Стирлинга

Двигатели Стирлинга бывают разных форм и форм. Большинство из них представляют собой варианты четырех основных конфигураций: альфа, бета, гамма и конструкции двойного действия, показанные на диаграмме ниже.

Двигатель Стирлинга (альфа-конфигурация)

Фиксированное количество воздуха или другой рабочей жидкости заключено в двух цилиндрах, горячем и холодном, и перемещается между ними вперед и назад.Воздух нагревается и расширяется в горячем цилиндре и охлаждается в холодном цилиндре, где он сжимается, отдавая свою энергию для выполнения механической работы в процессе.

Примечание: Два поршня соединены с коленчатым валом, но их движения не совпадают по фазе друг с другом на 90 градусов. Это означает, что когда один поршень находится вверху или внизу своего хода, другой будет находиться на полпути между вершиной и основанием. Было разработано множество оригинальных механизмов, обеспечивающих замедленное движение между поршнями.Здесь для простоты показаны только простые коленчатые валы.

1. Рабочая жидкость (газ) нагревается и расширяется, толкая горячий поршень ко дну цилиндра, вращая коленчатый вал, таким образом извлекая работу из горячего газа.Расширение продолжается, заставляя газ течь в сторону холодного цилиндра. Поршень в холодном цилиндре, который находится на 90 градусов (четверть оборота) позади горячего поршня в своем цикле, также толкается вниз, извлекая больше работы из горячего газа.

2. Теперь объем газа максимален. Импульс маховика на коленчатом валу теперь толкает поршень в горячем цилиндре к вершине его хода, заставляя большую часть газа в холодный цилиндр толкать холодный поршень вниз.В холодном баллоне газ остывает и его давление падает.

3. Когда горячий поршень достигает верхней точки своего хода, почти весь газ переходит в холодный цилиндр, где продолжается охлаждение и газ сжимается, еще больше снижая давление. Пониженное давление позволяет холодному поршню подняться. Сила импульса маховика сжимает газ и заставляет его возвращаться к горячему цилиндру.

4.Газ достигает своего минимального объема и нагнетается в горячий цилиндр, где он начинает толкать горячий поршень вниз. Газ снова нагревается в горячем цилиндре, где его давление увеличивается, и он расширяется, толкая горячий поршень вниз во время рабочего хода, и цикл начинается снова.

Регенератор

Регенератор, расположенный в воздушном канале между двумя поршнями, не является обязательным, но служит для повышения эффективности двигателя.Обычно это металлическая или керамическая матрица с большой площадью поверхности, способной поглощать или отдавать тепло. Когда газ циркулирует от горячего цилиндра к холодному, часть его тепла передается регенератору, помогая охладить газ. Когда холодный газ возвращается в горячий цилиндр, на обратном пути он забирает тепло от регенератора. Это снижает как количество тепла, которое должно подводиться к газу источником тепла, так и количество отходящего тепла, которое должно быть отведено из газа системой охлаждения.Таким образом, снижается расход топлива и повышается общий КПД рабочего цикла.

Канал передачи газа между двумя цилиндрами представляет собой мертвое пространство, и в большинстве конструкций оно минимально возможно.

Рабочей жидкостью может быть просто воздух, но для увеличения удельной мощности можно использовать другие газы, такие как водород, гелий и азот.

Двигатель Стирлинга (бета-конфигурация)

Термодинамика бета-двигателя Стирлинга аналогична термодинамике альфа-двигателя, но физическая конфигурация сильно отличается.

Бета-двигатель имеет только один цилиндр, который с одной стороны нагревается, а с другой — охлаждается. Одиночный силовой поршень расположен соосно с поршнем буйка, и оба поршня перемещаются внутри этого цилиндра. Поршень вытеснителя не извлекает энергию из расширяющегося газа, а только служит для перемещения рабочего газа вперед и назад между горячим и холодным концом. Как и в альфа-двигателе, циклические движения поршней разнесены на 90 градусов, при этом поршень вытеснителя опережает силовой поршень на четверть оборота коленчатого вала.

Механизм соединения движений двух поршней довольно сложен. Шатун буйка состоит из двух частей. Верхняя тяга жестко прикреплена к вытеснителю и проходит через центр силового поршня и должна обеспечивать герметичное уплотнение с поршнем, чтобы рабочий газ не выходил. Вторая часть тяги буйка — это обычный шатун, соединяющий верхнюю тягу с коленчатым валом. Поскольку механизм буйка занимает пространство, обычно занимаемое шатуном силового поршня, рычажный механизм для силового поршня также должен быть разделен на две части, по одной с каждой стороны рычажного механизма буйка, чтобы поддерживать уравновешенные силы на силовом поршне.

По мере того, как газ нагревается в горячем конце цилиндра, он расширяется и выталкивается через регенератор в холодный конец цилиндра.

По мере движения буйка вверх газ перемещается в его холодный конец и толкает поршень вниз

Когда поплавок достигает верхней точки своего хода, весь газ перемещается в холодный конец, где охлаждается и сжимается.В то же время поршень следует за буйком вверх.

Когда вытеснитель начинает двигаться вниз, поршень продолжает двигаться вверх, и холодный газ переносится к горячему концу цилиндра, и цикл начинается снова.

Двигатель может также включать регенератор для повышения эффективности. Для ясности он показан отдельно от цилиндра. На практике более вероятно, что он будет встроен в стенку цилиндра.В некоторых конструкциях сам поршень буйка действует как регенератор.

Двигатель Стирлинга (гамма-конфигурация)

Гамма-конфигурация Стирлинга — это просто бета-двигатель Стирлинга, в котором силовой поршень установлен не соосно с поршнем буйка, а в отдельном цилиндре.Это позволяет избежать сложностей, связанных с прохождением рычажного механизма поршня буйка через силовой поршень.

Фиксированное количество рабочей жидкости (газа) поддерживается в цилиндрах поршнями, которые образуют газонепроницаемое уплотнение со стенками цилиндра. Вытеснитель свободно помещается в горячем цилиндре, позволяя газу проходить по сторонам при движении вверх и вниз.Как и в других двигателях Стирлинга, газ поочередно нагревается и охлаждается, заставляя его расширяться и сжиматься, когда он перемещается между горячим и холодным цилиндрами, передавая свою энергию силовому поршню в холодном цилиндре.

Двигатель Стирлинга двойного действия (с наклонной шайбой)

В этой конфигурации меньше механических частей, чем в других конструкциях, и она больше подходит для приложений с более высокой мощностью.

Рабочий газ перемещается назад и вперед через регенераторы между соседними цилиндрами, которые нагреваются вверху и охлаждаются внизу.Эта конструкция не требует вытеснителей, поскольку эту функцию выполняют поршни в соседних цилиндрах. Цилиндры должны быть закрыты с обоих концов, а шатуны должны проходить через уплотнения в нижних крышках цилиндров, чтобы газ в цилиндрах не выходил. Его преимущество состоит в том, что сила, создаваемая расширяющимся газом на одной стороне цилиндра, увеличивается на силу, создаваемую сжимающимся газом на другой стороне, или, другими словами, эффективный перепад давления на поршнях увеличивается.

В случае четырехцилиндрового механизма движение поршней сдвинуто по фазе на 90 градусов с каждым из его соседних элементов. Возвратно-поступательное движение поршней преобразуется во вращательное с помощью привода наклонной шайбы.

Цилиндры расположены в неподвижном кольце вокруг вращающегося вала, который включает наклонную наклонную шайбу, которая также действует как маховик.Когда пластина вращается, кажется, что ее поверхность поднимается и опускается, когда она проходит под цилиндрами, и это гармоничное движение передается через шатуны с возвратно-поступательными поршнями.

Приложения

Двигатели Стирлинга использовались в различных формах с 1930-х годов в качестве движущей силы в ряде транспортных средств, и были разработаны двигатели мощностью 75 кВт и более.Хотя ранние разработки двигателей предназначались для использования в автомобилях, из-за своей низкой удельной мощности двигатель Стирлинга лучше подходит для стационарных применений, и в последние годы он стал больше использоваться для выработки электроэнергии.

  • Теплоэлектроцентраль
  • Двигатель Стирлинга идеален для использования в небольших теплоэлектроцентралях для улавливания отработанного тепла. Генераторы с двигателем Стирлинга с выходной мощностью от 1 кВт до 10 кВт доступны для бытовых применений, где отработанное тепло используется котлом центрального отопления.Общий тепловой КПД этих установок может достигать 80%.

    См. Страницы Hybrid Power для получения дополнительной информации.

  • Солнечная энергия
  • В США группы двигателей Стирлинга мощностью 25 кВт используются для выработки электроэнергии из тепловой энергии, улавливаемой большими солнечными тепловыми батареями. См. Также небольшие солнечные тепловые установки для получения подробной информации.

См. Также Генераторы

Вернуться к Обзор электроснабжения

Двигатель Стирлинга

Двигатель Стирлинга альфа-типа.Есть два цилиндра. В цилиндре расширения (красный) поддерживается высокая температура, в то время как цилиндр сжатия (синий) охлаждается. В проходе между двумя цилиндрами находится регенератор. Двигатель Стирлинга бета-типа. Есть только один цилиндр, горячий с одного конца и холодный с другого. Из-за неплотно установленного буйка воздух перемещается между горячим и холодным концом цилиндра. Силовой поршень на конце цилиндра приводит в движение маховик.

A Двигатель Стирлинга — это тепловой двигатель, работающий за счет циклического сжатия и расширения воздуха или другого газа, рабочего тела , на различных уровнях температуры, так что происходит чистое преобразование тепловой энергии в механическую работу. [1] [2]

Как и паровой двигатель, двигатель Стирлинга традиционно классифицируется как двигатель внешнего сгорания, поскольку вся теплопередача к рабочему телу и от него происходит через стенку двигателя. Это контрастирует с двигателем внутреннего сгорания, где подвод тепла происходит за счет сгорания топлива в теле рабочего тела. В отличие от парового двигателя (или, в более общем смысле, двигателя цикла Ренкина) использования рабочего тела как в жидкой, так и в газовой фазах, двигатель Стирлинга содержит фиксированное количество постоянно газообразной жидкости, такой как воздух.

Типичный для тепловых двигателей, общий цикл состоит из сжатия холодного газа, нагрева газа, расширения горячего газа и, наконец, охлаждения газа перед повторением цикла. Эффективность процесса сильно ограничена эффективностью цикла Карно, которая зависит от разницы температур между горячим и холодным резервуарами.

Первоначально задуманный в 1816 году как промышленный двигатель, способный конкурировать с паровым двигателем, его практическое использование в основном ограничивалось маломощными бытовыми приложениями на протяжении более века. [3]

Двигатель Стирлинга отличается высоким КПД по сравнению с паровыми двигателями, [4] бесшумной работой и легкостью, с которой он может использовать практически любой источник тепла. Совместимость с альтернативными и возобновляемыми источниками энергии приобретает все большее значение по мере роста цен на обычное топливо, а также в свете таких проблем, как пик нефти и изменение климата. Этот двигатель в настоящее время вызывает интерес как основной компонент микрогенераторов тепла и электроэнергии (ТЭЦ), в которых он более эффективен и безопасен, чем сопоставимый паровой двигатель. [5] [6]

Название и определение

Роберт Стирлинг был шотландским изобретателем первого практического примера воздушного двигателя замкнутого цикла в 1816 году, и еще в 1884 году Флиминг Дженкин предложил, чтобы все такие двигатели в общем назывались двигателями Стирлинга. Это предложение по наименованию не нашло особой поддержки, и различные типы, представленные на рынке, продолжали быть известны по именам их отдельных дизайнеров или производителей, например Двигатель Райдера, Робинсона или (горячего) воздуха Хейнрици.В 1940-х годах компания Philips искала подходящее название для своей собственной версии «воздушного двигателя», который к тому времени испытывался с рабочими жидкостями, отличными от воздуха, и в апреле 1945 года остановилась на «двигателе Стирлинга». [ 7] Однако почти тридцать лет спустя Грэм Уокер все еще сетовал на тот факт, что такие термины, как «двигатель горячего воздуха», продолжали использоваться как синонимы «двигатель Стирлинга», которые сами по себе применялись широко и без разбора. [8] В настоящее время ситуация несколько улучшилась, по крайней мере, в академической литературе, и сейчас общепринято считать, что «двигатель Стирлинга» должен относиться исключительно к регенеративному тепловому двигателю замкнутого цикла с постоянно газообразной рабочей жидкостью, где замкнутый- цикл определяется как термодинамическая система, в которой рабочая жидкость постоянно содержится в системе, а регенеративная описывает использование особого типа внутреннего теплообменника и накопителя тепла, известного как регенератор .

Из работы по замкнутому циклу следует, что двигатель Стирлинга — это двигатель внешнего сгорания, который изолирует свою рабочую жидкость от энергии, поступающей от внешнего источника тепла. Существует много возможных вариантов реализации двигателя Стирлинга, большинство из которых относятся к категории поршневых двигателей с возвратно-поступательным движением.

Функциональное описание

Двигатель сконструирован так, что рабочий газ обычно сжимается в более холодной части двигателя и расширяется в более горячей части, что приводит к чистому преобразованию тепла в работу. [2] Внутренний регенеративный теплообменник увеличивает тепловой КПД двигателя Стирлинга по сравнению с более простыми двигателями с горячим воздухом, в которых эта функция отсутствует.

Ключевые компоненты

Схема в разрезе бета-конфигурации ромбического привода Конструкция двигателя Стирлинга:

  • Pink — Стенка горячего цилиндра
  • Темно-серый — Стенка холодного цилиндра (с желтыми трубами входа и выхода охлаждающей жидкости)
  • Темно-зеленый — теплоизоляция, разделяющая два конца цилиндра
  • Светло-зеленый — поршневой буйковый
  • Темно-синий — Силовой поршень
  • Голубой — Тяга кривошипа и маховика
Не показано: источник тепла и радиаторы.В этой конструкции поршень буйка выполнен без специального регенератора.

Вследствие работы по замкнутому циклу тепло, приводящее в действие двигатель Стирлинга, должно передаваться от источника тепла к рабочей жидкости через теплообменники и, наконец, к радиатору. Система двигателя Стирлинга имеет по крайней мере один источник тепла, один радиатор и до пяти теплообменников. Некоторые типы могут сочетать или обходиться без некоторых из них.

Источник тепла
Параболическое зеркало с точечной фокусировкой с двигателем Стирлинга в центре и устройством слежения за солнечными лучами в Plataforma Solar de Almería (PSA) в Испании

Источником тепла может служить сгорание топлива, и, поскольку продукты сгорания не смешиваются с рабочей жидкостью и, следовательно, не вступают в контакт с внутренними частями двигателя, двигатель Стирлинга может работать на топливе, которое повредить внутренние детали двигателей других типов, например, свалочный газ, содержащий силоксан.

Другими подходящими источниками тепла являются концентрированная солнечная энергия, геотермальная энергия, ядерная энергия, отходящее тепло или даже биологические. Если источником тепла является солнечная энергия, можно использовать обычные солнечные зеркала и солнечные тарелки. Также рекомендуется использовать линзы Френеля и зеркала (например, для исследования поверхности планет). [9] Двигатели Стирлинга, работающие на солнечной энергии, становятся все более популярными, поскольку они являются очень экологически безопасным вариантом для выработки энергии. Также некоторые конструкции экономически привлекательны в девелоперских проектах. [10]

Нагреватель / теплообменник горячей стороны

В небольших двигателях малой мощности он может просто состоять из стенок горячего пространства (а), но там, где требуется большая мощность, требуется большая площадь поверхности для передачи достаточного количества тепла. Типичное исполнение — внутренние и внешние ребра или несколько труб малого диаметра

Проектирование теплообменников двигателя Стирлинга — это баланс между высокой теплопередачей с низкими вязкостными насосными потерями и малым мертвым пространством (непромокаемый внутренний объем).В двигателях, работающих при высокой мощности и давлении, теплообменники на горячей стороне должны быть изготовлены из сплавов, сохраняющих значительную прочность при температуре, которые также не будут подвергаться коррозии или ползучести.

Регенератор
Основная статья: Регенеративный теплообменник

В двигателе Стирлинга регенератор представляет собой внутренний теплообменник и временный накопитель тепла, расположенный между горячим и холодным пространством, так что рабочая жидкость проходит через него сначала в одном направлении, а затем в другом. Его функция состоит в том, чтобы удерживать в системе то тепло, которое в противном случае передавалось бы с окружающей средой при температурах, промежуточных между максимальной и минимальной температурами цикла, [11] , таким образом позволяя тепловому КПД цикла приближаться к предельному КПД Карно, определяемому формулой эти максимумы и минимумы.

Первичный эффект регенерации в двигателе Стирлинга заключается в повышении теплового КПД за счет «рециркуляции» внутреннего тепла, которое в противном случае необратимо прошло бы через двигатель. В качестве вторичного эффекта повышенный термический КПД приводит к более высокой выходной мощности от данного набора теплообменников горячего и холодного конца. Именно они обычно ограничивают тепловую мощность двигателя. На практике эта дополнительная мощность не может быть полностью реализована, поскольку дополнительное «мертвое пространство» (непромокаемый объем) и насосные потери, присущие практическим регенераторам, уменьшают потенциальный выигрыш в эффективности от регенерации.

Задача конструкции регенератора двигателя Стирлинга состоит в том, чтобы обеспечить достаточную теплопередающую способность без введения слишком большого дополнительного внутреннего объема («мертвого пространства») или сопротивления потоку. Эти врожденные конфликты конструкции являются одним из многих факторов, ограничивающих эффективность практических двигателей Стирлинга. Типичная конструкция представляет собой пакет тонких металлических проволочных сеток с низкой пористостью для уменьшения мертвого пространства и с осями проволоки, перпендикулярными потоку газа, чтобы уменьшить проводимость в этом направлении и максимизировать конвективную теплопередачу. [12]

Регенератор — это ключевой компонент, изобретенный Робертом Стирлингом, и его присутствие отличает настоящий двигатель Стирлинга от любого другого двигателя с горячим воздухом замкнутого цикла. Многие небольшие «игрушечные» двигатели Стирлинга, особенно типы с низкотемпературным перепадом (LTD), не имеют отдельного компонента регенератора и могут считаться двигателями горячего воздуха, однако небольшая регенерация обеспечивается за счет поверхности самого вытеснителя и близлежащих элементов. стенка цилиндра или аналогично канал, соединяющий горячий и холодный цилиндры двигателя альфа-конфигурации.

Охладитель / теплообменник холодной стороны

В небольших двигателях малой мощности он может просто состоять из стенок холодного пространства (а), но там, где требуется большая мощность, необходим охладитель, использующий жидкость, например воду, для передачи достаточного количества тепла.

Радиатор

Радиатор обычно находится в окружающей среде с температурой окружающей среды. В случае двигателей средней и высокой мощности требуется радиатор для передачи тепла от двигателя в окружающий воздух.Судовые двигатели могут использовать окружающую воду. В случае комбинированных теплоэнергетических систем охлаждающая вода двигателя прямо или косвенно используется для отопления.

В качестве альтернативы, тепло может подаваться при температуре окружающей среды, а теплоотвод поддерживается при более низкой температуре с помощью таких средств, как криогенная жидкость (см. Экономия жидкого азота) или ледяная вода.

Буек

Вытеснитель представляет собой поршень специального назначения, используемый в двигателях Стирлинга типа Beta и Gamma для перемещения рабочего газа вперед и назад между горячим и холодным теплообменниками.В зависимости от типа конструкции двигателя, вытеснитель может быть или не быть прилегающим к цилиндру, т. Е. Он не плотно прилегает к цилиндру и позволяет рабочему газу проходить вокруг него, когда он движется, занимая часть цилиндра за его пределами.

Конфигурации

Существует два основных типа двигателей Стирлинга, которые различаются по способу перемещения воздуха между горячей и холодной сторонами цилиндра:

  1. Двухпоршневая конструкция типа alpha имеет поршни в независимых цилиндрах, и газ перемещается между горячим и холодным пространством.
  2. Объемные двигатели Стирлинга, известные как типы beta и gamma , используют изолированный механический вытеснитель для проталкивания рабочего газа между горячей и холодной сторонами цилиндра. Вытеснитель достаточно большой, чтобы термически изолировать горячую и холодную стороны цилиндра и вытеснять большое количество газа. Между буйком и стенкой цилиндра должен быть достаточный зазор, чтобы газ мог легко течь вокруг буйка.
Alpha Stirling

Модель alpha Stirling содержит два силовых поршня в отдельных цилиндрах, один горячий и один холодный.Горячий цилиндр расположен внутри высокотемпературного теплообменника, а холодный цилиндр расположен внутри низкотемпературного теплообменника. Этот тип двигателя имеет высокое отношение мощности к объему, но имеет технические проблемы из-за обычно высокой температуры горячего поршня и долговечности его уплотнений. [13] На практике этот поршень обычно имеет большую изолирующую головку для отвода уплотнений от горячей зоны за счет некоторого дополнительного мертвого пространства.

Действие двигателя Стирлинга альфа типа

На следующих схемах не показаны внутренние теплообменники в пространствах сжатия и расширения, которые необходимы для выработки энергии.Регенератор будет помещен в трубу, соединяющую два цилиндра. Коленчатый вал также был исключен.

Бета-Стирлинг

Модель beta Stirling имеет единственный силовой поршень, расположенный в том же цилиндре на том же валу, что и поршень буйка. Поршень вытеснителя имеет неплотную посадку и не отбирает энергию из расширяющегося газа, а служит только для перемещения рабочего газа от горячего теплообменника к холодному теплообменнику. Когда рабочий газ проталкивается к горячему концу цилиндра, он расширяется и толкает силовой поршень.Когда его толкают к холодному концу цилиндра, он сжимается, и импульс машины, обычно усиливаемый маховиком, толкает силовой поршень в другую сторону, чтобы сжать газ. В отличие от альфа-типа, бета-тип позволяет избежать технических проблем, связанных с горячим перемещением уплотнений. [14]

Действие двигателя Стирлинга бета-типа

Опять же, на следующих схемах не показаны внутренние теплообменники или регенератор, которые могут быть размещены в газовом тракте вокруг вытеснителя.

Гамма Стирлинг

Модель gamma Stirling — это просто бета-версия Стирлинга, в которой силовой поршень установлен в отдельном цилиндре рядом с поршневым цилиндром буйка, но все еще соединен с тем же маховиком. Газ в двух цилиндрах может свободно течь между ними и оставаться единым корпусом. Эта конфигурация обеспечивает более низкую степень сжатия, но механически проще и часто используется в многоцилиндровых двигателях Стирлинга.

Другие типы

Другие конфигурации Стирлинга продолжают интересовать инженеров и изобретателей.

Гибрид поршневой и роторной конфигурации — это двигатель двойного действия. Эта конструкция вращает вытеснители по обе стороны от силового поршня

. Вид сверху на два вращающихся буйка, приводящих в действие горизонтальный поршень. Регенераторы и радиатор сняты для наглядности.

Существует также роторный двигатель Стирлинга , который стремится преобразовывать мощность цикла Стирлинга непосредственно в крутящий момент, аналогично роторному двигателю внутреннего сгорания. Практический двигатель еще не построен, но был разработан ряд концепций, моделей и патентов, например, квазитурбинный двигатель. [15]

Другой альтернативой является двигатель Fluidyne (тепловой насос Fluidyne ), в котором для реализации цикла Стирлинга используются гидравлические поршни. Работа двигателя Fluidyne заключается в перекачивании жидкости. В простейшем виде двигатель содержит рабочий газ, жидкость и два обратных клапана.

Двигатель с кольцевой бомбой Концепция , опубликованная в 1907 году, не имеет поворотного механизма или рычажного механизма для вытеснителя. Вместо этого он приводится в движение небольшим вспомогательным поршнем, обычно толстым стержнем буйка, с ограничением движения ограничителями. [16]

Двухцилиндровый двигатель Стирлинга с вилкой Росс представляет собой двухцилиндровый двигатель Стирлинга (не под углом 90 °, а под углом 0 °), соединенный со специальной вилкой. Конфигурация двигателя / установка ярма была изобретена Энди Россом (инженер) [требуется значение ] . [17]

Двигатель Franchot — это двигатель двойного действия, изобретенный компанией «Franchot» в девятнадцатом веке. Двигатель двойного действия — это двигатель, в котором на обе стороны поршня действует давление рабочей жидкости.Одна из простейших форм машины двойного действия, двигатель Franchot состоит из двух поршней и двух цилиндров и действует как две отдельные альфа-машины. В двигателе Franchot каждый поршень действует в двух газовых фазах, что позволяет более эффективно использовать механические компоненты, чем в альфа-машине одностороннего действия. Хотя недостатком этой машины является то, что один шатун должен иметь скользящее уплотнение на горячей стороне двигателя, что является сложной задачей при работе с высокими давлениями и высокими температурами [ необходима ссылка ] .

Двигатели Стирлинга со свободным поршнем
Различные конфигурации Стирлинга со свободным поршнем … F. «Свободный цилиндр», G. Fluidyne, H. «Двустороннее действие» Стирлинга (обычно 4 цилиндра)

«Свободнопоршневые» двигатели Stirling включают двигатели с жидкостными поршнями и двигатели с диафрагмами в качестве поршней. В устройстве со «свободным поршнем» энергия может добавляться или сниматься электрическим линейным генератором переменного тока, насосом или другим коаксиальным устройством. Это позволяет обойтись без рычажного механизма и уменьшить количество движущихся частей.В некоторых конструкциях трение и износ практически исключаются за счет использования бесконтактных газовых подшипников или очень точной подвески с помощью плоских пружин.

Четыре основных этапа в цикле двигателя «Свободный поршень» Стирлинга,

  1. Силовой поршень выталкивается расширяющимся газом, выполняя свою работу. Гравитация не играет роли в круговороте.
  2. Объем газа в двигателе увеличивается, и, следовательно, давление снижается, что вызывает перепад давления на стержне буйка, заставляя его двигаться к горячему концу.Когда вытеснитель перемещается, поршень почти неподвижен, и поэтому объем газа почти постоянен. Этот шаг приводит к процессу охлаждения постоянного объема, который снижает давление газа.
  3. Пониженное давление теперь останавливает движение поршня наружу, и он снова начинает ускоряться к горячему концу и за счет своей собственной инерции сжимает теперь холодный газ, который в основном находится в холодном пространстве.
  4. По мере увеличения давления достигается точка, в которой перепад давления на стержне буйка становится достаточно большим, чтобы начать толкать шток буйка (а, следовательно, и буйковый уровнемер) к поршню и тем самым сжимать холодное пространство и передавать холодное сжатое газ к горячей стороне в процессе почти постоянного объема.Когда газ поступает на горячую сторону, давление увеличивается и начинает перемещать поршень наружу, чтобы инициировать стадию расширения, как объяснено в (1).

В начале 1960-х У.Т. Бил изобрел свободнопоршневую версию двигателя Стирлинга, чтобы преодолеть трудности со смазкой кривошипно-шатунного механизма. [18] В то время как изобретение базового двигателя Стирлинга со свободным поршнем обычно приписывается Билу, независимые изобретения подобных типов двигателей были сделаны Э.Х. Кук-Ярборо и К. Вест в лабораториях Харвелла UKAERE. [19] G.M. Бенсон также внес важный вклад и запатентовал множество новых конфигураций со свободным поршнем. [20]

То, что кажется первым упоминанием о машине цикла Стирлинга, использующей свободно движущиеся компоненты, является раскрытием британского патента в 1876 году. [21] Эта машина была задумана как холодильник (то есть , обращенный цикл Стирлинга ). Первым потребительским продуктом, в котором использовалось устройство Стирлинга со свободным поршнем, был портативный холодильник, изготовленный японской корпорацией Twinbird и предложенный в США компанией Coleman в 2004 году.

Термоакустический цикл

Термоакустические устройства сильно отличаются от устройств Стирлинга, хотя индивидуальный путь, пройденный каждой молекулой рабочего газа, действительно соответствует реальному циклу Стирлинга. Эти устройства включают термоакустический двигатель и термоакустический холодильник. Акустические стоячие волны большой амплитуды вызывают сжатие и расширение, аналогично силовому поршню Стирлинга, в то время как сдвинутые по фазе акустические бегущие волны вызывают смещение по градиенту температуры, аналогично поршню буйка Стирлинга.Таким образом, термоакустическое устройство обычно не имеет вытеснителя, как у бета- или гамма-излучения Стирлинга.

История

Иллюстрация к заявке Роберта Стирлинга 1816 года на конструкцию воздушного двигателя, который позже стал известен как двигатель Стирлинга

Двигатель Стирлинга (или воздушный двигатель Стирлинга, как он был известен в то время) был изобретен и запатентован Робертом Стирлингом в 1816 году. [22] Он последовал за более ранними попытками создания воздушного двигателя, но, вероятно, был первым, кто был применен Практическое использование, когда в 1818 году двигатель, построенный Стирлингом, использовался для откачки воды в карьере. [23] Основным предметом первоначального патента Стирлинга был теплообменник, который он назвал «экономайзером» за повышение экономии топлива в различных областях применения. В патенте также подробно описано использование одной из форм экономайзера в его уникальной конструкции воздушного двигателя замкнутого цикла [24] , в которой он теперь широко известен как «регенератор». Последующая разработка Робертом Стирлингом и его братом Джеймсом, инженером, привела к получению патентов на различные улучшенные конфигурации исходного двигателя, включая наддув, который к 1843 году позволил значительно увеличить выходную мощность, чтобы приводить в действие все механизмы на литейном заводе в Данди. [25]

Хотя это оспаривается [26] , широко распространено мнение, что изобретатели не только экономили топливо, но и были заинтересованы в создании более безопасной альтернативы паровым двигателям того времени, [27] , котлы которых часто взрывались, вызывая множество травм. и несчастные случаи. [28] [29] Необходимость работы двигателей Стирлинга при очень высоких температурах для максимизации мощности и эффективности выявила ограничения в используемых в то время материалах, и несколько двигателей, которые были построены в те первые годы, терпели неприемлемо частые отказы ( хотя и с гораздо менее катастрофическими последствиями, чем взрыв котла [30] ) — например, литейный двигатель Данди был заменен паровым после трех отказов горячего цилиндра за четыре года. [31]

Позднее девятнадцатого века

После выхода из строя литейного двигателя в Данди нет никаких свидетельств того, что братья Стирлинг в дальнейшем участвовали в разработке пневматических двигателей, а двигатель Стирлинга больше никогда не конкурировал с паром в качестве источника энергии в промышленных масштабах (паровые котлы становились более безопасными [32] ] и паровые двигатели более эффективны, поэтому представляют меньшую цель для конкурирующих первичных двигателей). Однако примерно с 1860 года меньшие двигатели типа Стирлинга / горячего воздуха производились в значительном количестве и находили применение везде, где требовался надежный источник малой и средней мощности, например, для подъема воды или подачи воздуха в церковные органы. [33] Они обычно работали при более низких температурах, чтобы не облагать налогом доступные материалы, поэтому были относительно неэффективными. Но их выгодным аргументом было то, что, в отличие от парового двигателя, ими мог безопасно управлять любой, кто способен справиться с пожаром. [34] Несколько типов оставались в производстве после конца века, но, за исключением нескольких незначительных механических усовершенствований, конструкция двигателя Стирлинга в целом в течение этого периода не развивалась. [35]

Возрождение двадцатого века

В начале двадцатого века роль двигателя Стирлинга как «домашнего двигателя» [36] постепенно была передана электродвигателю и малым двигателям внутреннего сгорания.К концу 1930-х годов о нем почти забыли, и его производили только для игрушек и нескольких небольших вентиляторов. [37]

В то время Philips стремилась расширить продажи своих радиоприемников в тех частях мира, где не было электричества и не хватало батарей. Руководство Philips решило, что предложение портативного генератора малой мощности будет способствовать таким продажам, и поручило группе инженеров в исследовательской лаборатории компании в Эйндховене оценить альтернативные способы достижения этой цели.После систематического сравнения различных первичных двигателей команда решила продолжить работу с двигателем Стирлинга, сославшись на его тихую работу (как на слух, так и с точки зрения радиопомех) и способность работать от различных источников тепла (обычное масло для ламп — » дешево и доступно везде »- пользовались большим успехом). [38] Они также знали, что, в отличие от паровых двигателей и двигателей внутреннего сгорания, в течение многих лет практически не проводились серьезные опытно-конструкторские работы по двигателю Стирлинга, и они утверждали, что современные материалы и ноу-хау должны способствовать значительным улучшениям. [39]

Генератор Стирлинга Philips MP1002CA 1951 г.

Вдохновленные своим первым экспериментальным двигателем, который выдавал мощность на валу 16 Вт при диаметре канала ствола и хода 30 мм × 25 мм, были произведены [40] различные опытные модели в рамках программы, которая продолжалась на протяжении всей Второй мировой войны. К концу 1940-х «Тип 10» был готов к передаче дочерней компании Philips Йохану де Витту в Дордрехте для производства и включения в генераторную установку, как первоначально планировалось.Результат, рассчитанный на электрическую мощность 180/200 Вт от отверстия и хода 55 мм x 27 мм, получил обозначение MP1002CA (известный как «набор бунгало»). Производство первой партии из 250 штук началось в 1951 году, но стало ясно, что они не могут быть произведены по конкурентоспособной цене, кроме того, появление транзисторных радиоприемников с их гораздо более низкими требованиями к мощности означало, что первоначальное обоснование для набора исчезло. В итоге было произведено около 150 таких наборов. [41] Некоторые из них поступили на инженерные факультеты университетов и колледжей по всему миру [42] давая целым поколениям студентов возможность познакомиться с двигателем Стирлинга.

Philips продолжала разрабатывать экспериментальные двигатели Стирлинга для самых разных применений и продолжала работать в этой области до конца 1970-х годов, но достигла коммерческого успеха только с криокулером «реверсивный двигатель Стирлинга». Тем не менее, они получили большое количество патентов и накопили огромное количество информации, которую они передали по лицензиям другим компаниям и которая легла в основу большей части разработок в современную эпоху. [43]

Начиная с 1986 года, Infinia Corporation приступила к разработке как высоконадежных импульсных двигателей Стирлинга со свободным поршнем, так и термоакустических охладителей с использованием соответствующей технологии.В опубликованной конструкции используются изгибные подшипники и герметичные газовые циклы с гелием для достижения проверенной надежности, превышающей 20 лет. По состоянию на 2010 год корпорация получила более 30 патентов и разработала ряд коммерческих продуктов как для комбинированного производства тепла и электроэнергии, так и для солнечной энергетики. [44]

Теория

Основная статья: цикл Стирлинга

Идеализированный цикл Стирлинга состоит из четырех термодинамических процессов, действующих на рабочую жидкость:

  1. Изотермическое расширение.В пространстве расширения и связанном с ним теплообменнике поддерживается постоянная высокая температура, и газ подвергается почти изотермическому расширению, поглощая тепло от горячего источника.
  2. Отвод тепла с постоянным объемом (известный как изоволюметрический или изохорный). Газ проходит через регенератор, где он охлаждается, передавая тепло регенератору для использования в следующем цикле.
  3. Изотермическое сжатие. В камере сжатия и связанном с ней теплообменнике поддерживается постоянная низкая температура, поэтому газ подвергается почти изотермическому сжатию, отводя тепло в охлаждающий сток
  4. Подвод тепла с постоянным объемом (известный как изоволюметрический или изохорный).Газ проходит обратно через регенератор, где он восстанавливает большую часть тепла, переданного в 2, нагреваясь на пути к пространству расширения.

Теоретический тепловой КПД равен гипотетическому циклу Карно, то есть наивысший КПД, достижимый для любого теплового двигателя. Однако, хотя он полезен для иллюстрации общих принципов, цикл учебника далек от представления того, что на самом деле происходит внутри практического двигателя Стирлинга, и его следует рассматривать только как отправную точку для анализа.Фактически утверждалось, что его неизбирательное использование во многих стандартных книгах по инженерной термодинамике оказало медвежью услугу изучению двигателей Стирлинга в целом. [45] [46]

Другие реальные проблемы снижают эффективность реальных двигателей из-за ограничений конвективной теплопередачи и вязкого течения (трения). Существуют также практические механические соображения, например, простая кинематическая связь может быть предпочтительнее более сложного механизма, необходимого для воспроизведения идеализированного цикла, и ограничения, накладываемые доступными материалами, такими как неидеальные свойства рабочего газа, теплопроводность, предел прочности при растяжении. , ползучесть, предел прочности и температура плавления.Часто возникает вопрос, действительно ли идеальный цикл с изотермическим расширением и сжатием является правильным идеальным циклом для двигателя Стирлинга. Профессор К. Дж. Раллис указал, что очень трудно представить себе любое состояние, при котором пространства расширения и сжатия могут приближаться к изотермическому поведению, и гораздо более реалистично представить эти пространства как адиабатические. [47] Идеальный анализ, в котором пространства расширения и сжатия считаются адиабатическими с изотермическими теплообменниками и идеальной регенерацией, был проанализирован Раллисом и представлен как лучший идеальный критерий для машин Стирлинга.Он назвал этот цикл «псевдо-циклом Стирлинга» или «идеальным адиабатическим циклом Стирлинга». Важным следствием этого идеального цикла является то, что он не предсказывает КПД Карно. Еще один вывод из этого идеального цикла состоит в том, что максимальная эффективность достигается при более низких степенях сжатия, что характерно для реальных машин. В независимой работе Т. Финкельштейн также предположил адиабатическое расширение и пространство сжатия в своем анализе машин Стирлинга [48]

Операция

Поскольку двигатель Стирлинга имеет замкнутый цикл, он содержит фиксированную массу газа, называемого «рабочим телом», чаще всего воздух, водород или гелий.В нормальном режиме работы двигатель герметичен, и газ не входит в двигатель и не выходит из него. В отличие от поршневых двигателей других типов, клапаны не требуются. Двигатель Стирлинга, как и большинство тепловых двигателей, проходит через четыре основных процесса: охлаждение, сжатие, нагрев и расширение. Это достигается перемещением газа вперед и назад между горячим и холодным теплообменниками, часто с регенератором между нагревателем и охладителем. Горячий теплообменник находится в тепловом контакте с внешним источником тепла, таким как топливная горелка, а холодный теплообменник находится в тепловом контакте с внешним теплоотводом, таким как воздушные ребра.Изменение температуры газа вызовет соответствующее изменение давления газа, в то время как движение поршня заставляет газ попеременно расширяться и сжиматься.

Газ следует поведению, описанному газовыми законами, которые описывают, как связаны давление, температура и объем газа. Когда газ нагревается, поскольку он находится в герметичной камере, давление повышается, и это затем действует на силовой поршень, создавая рабочий ход. Когда газ охлаждается, давление падает, и это означает, что поршню требуется меньше работы для сжатия газа на обратном ходу, что дает полезную выходную мощность.

Когда одна сторона поршня открыта в атмосферу, работа немного отличается. Когда запечатанный объем рабочего газа входит в контакт с горячей стороной, он расширяется, выполняя работу как с поршнем, так и с атмосферой. Когда рабочий газ контактирует с холодной стороной, его давление падает ниже атмосферного, и атмосфера давит на поршень и воздействует на газ.

Подводя итог, можно сказать, что двигатель Стирлинга использует разницу температур между его горячим и холодным концом, чтобы установить цикл с фиксированной массой газа, нагретого и расширенного, охлажденного и сжатого, таким образом преобразуя тепловую энергию в механическую.Чем больше разница температур между горячим и холодным источниками, тем выше термический КПД. Максимальный теоретический КПД эквивалентен циклу Карно, однако КПД реальных двигателей меньше этого значения из-за трения и других потерь.

Видео, показывающее компрессор и вытеснитель очень маленького двигателя Стирлинга в действии

Созданы двигатели очень малой мощности, которые будут работать при разнице температур всего 0,5 К. [49]

В двигателе Стирлинга буйкового типа у вас есть один поршень и один буйк.Для работы двигателя требуется разница температур между верхом и низом большого цилиндра. В случае низкотемпературного двигателя (LTD) стирлинга разницы температур между вашей рукой и окружающим воздухом может быть достаточно для запуска двигателя. Силовой поршень в двигателе Стирлинга буйкового типа плотно закрыт и может перемещаться вверх и вниз по мере расширения газа внутри. С другой стороны, вытеснитель установлен очень свободно, так что воздух может свободно перемещаться между горячей и холодной секциями двигателя при движении поршня вверх и вниз.Диспенсер перемещается вверх и вниз, чтобы контролировать нагрев и охлаждение газа в двигателе.
Есть две позиции,

1) Когда буйковый уровнемер находится в верхней части большого цилиндра.
• Внутри двигателя большая часть газа нагревается источником тепла, и он расширяется. Это вызывает повышение давления, которое заставляет поршень подниматься.

2) Когда буйковый уровнемер находится около дна большого цилиндра.
• Большая часть газа в двигателе теперь остыла и сжимается, вызывая снижение давления, что, в свою очередь, позволяет поршню опускаться и сжимать газ.

Напор

В большинстве двигателей Стирлинга большой мощности и минимальное, и среднее давление рабочего тела выше атмосферного. Это начальное повышение давления в двигателе может быть реализовано с помощью насоса, или путем заполнения двигателя из резервуара для сжатого газа, или даже просто путем герметизации двигателя, когда средняя температура ниже средней рабочей температуры. Все эти методы увеличивают массу рабочего тела в термодинамическом цикле. Все теплообменники должны иметь соответствующий размер, чтобы обеспечивать необходимую скорость теплопередачи.Если теплообменники хорошо спроектированы и могут обеспечивать тепловой поток, необходимый для конвективной теплопередачи, то двигатель в первом приближении будет вырабатывать мощность, пропорциональную среднему давлению, как предсказывается числом Веста и числом Била. На практике максимальное давление также ограничивается безопасным давлением резервуара высокого давления. Как и большинство аспектов конструкции двигателя Стирлинга, оптимизация является многовариантной и часто требует противоречивых требований. [50] Сложность повышения давления заключается в том, что, хотя это улучшает мощность, требуемое тепло увеличивается пропорционально увеличению мощности.Эта теплопередача становится все более сложной при повышении давления, поскольку повышенное давление также требует увеличения толщины стенок двигателя, что, в свою очередь, увеличивает сопротивление теплопередаче.

Смазки и трение

Современный двигатель Стирлинга и генераторная установка мощностью 55 кВт для комбинированного производства тепла и электроэнергии.

При высоких температурах и давлениях кислород в картерах с воздушным давлением или в рабочем газе двигателей с горячим воздухом может соединиться со смазочным маслом двигателя и взорваться.По крайней мере, один человек погиб в результате такого взрыва. [51]

Смазочные материалы также могут засорить теплообменники, особенно регенератор. По этим причинам конструкторы предпочитают несмазываемые материалы с низким коэффициентом трения (например, рулон или графит) с низкими нормальными силами на движущиеся части, особенно для скользящих уплотнений. В некоторых конструкциях поверхности скольжения полностью отсутствуют за счет использования диафрагм для герметичных поршней. Это некоторые из факторов, которые позволяют двигателям Стирлинга иметь более низкие требования к техническому обслуживанию и более длительный срок службы, чем двигатели внутреннего сгорания.

Анализ

Сравнение с двигателями внутреннего сгорания

В отличие от двигателей внутреннего сгорания, двигатели Стирлинга могут более легко использовать возобновляемые источники тепла, быть более тихими и более надежными при меньших затратах на техническое обслуживание. Они предпочтительны для приложений, которые ценят эти уникальные преимущества, особенно если стоимость единицы произведенной энергии ($ / кВтч) более важна, чем капитальные затраты на единицу мощности ($ / кВт). Исходя из этого, двигатели Стирлинга конкурентоспособны по стоимости до примерно 100 кВт. [52]

По сравнению с двигателем внутреннего сгорания той же мощности, двигатели Стирлинга в настоящее время имеют более высокие капитальные затраты и, как правило, больше и тяжелее. Однако они более эффективны, чем большинство двигателей внутреннего сгорания. [53] Их более низкие требования к техническому обслуживанию делают общую стоимость Energy сопоставимой. Термический КПД также сопоставим (для небольших двигателей) и составляет от 15% до 30%. [52] Для таких приложений, как микро-ТЭЦ, двигатель Стирлинга часто предпочтительнее двигателя внутреннего сгорания.Другие применения включают перекачку воды, космонавтику и производство электроэнергии из многочисленных источников энергии, несовместимых с двигателем внутреннего сгорания, таких как солнечная энергия, и биомасса, такая как сельскохозяйственные отходы, и другие отходы, такие как бытовые отходы. Стирлинги также использовались в качестве морского двигателя на шведских подводных лодках класса Gotland . [54] Однако двигатели Стирлинга, как правило, не являются конкурентоспособными по цене, как автомобильные двигатели, из-за высокой стоимости единицы мощности, низкой удельной мощности и высоких материальных затрат.

Базовый анализ основан на закрытом анализе Шмидта. [55] [56]

Преимущества
  • Двигатели Стирлинга могут работать непосредственно от любого доступного источника тепла, а не только от источника тепла, производимого путем сгорания, поэтому они могут работать на тепле от солнечных, геотермальных, биологических, ядерных источников или от отработанного тепла промышленных процессов.
  • Для подачи тепла можно использовать процесс непрерывного сгорания, поэтому выбросы, связанные с прерывистыми процессами сгорания поршневого двигателя внутреннего сгорания, могут быть уменьшены.
  • Большинство типов двигателей Стирлинга имеют подшипники и уплотнения на холодной стороне двигателя, они требуют меньше смазки и служат дольше, чем другие типы поршневых двигателей.
  • Механизмы двигателя в некоторых отношениях проще, чем у других типов поршневых двигателей. Никаких клапанов не требуется, и система горелки может быть относительно простой. Неочищенные двигатели Стирлинга могут быть изготовлены из обычных бытовых материалов. [57]
  • В двигателе Стирлинга используется однофазная рабочая жидкость, которая поддерживает внутреннее давление, близкое к расчетному, и, таким образом, для правильно спроектированной системы риск взрыва низок.Для сравнения, паровой двигатель использует двухфазную рабочую жидкость газ / жидкость, поэтому неисправный выпускной клапан может вызвать взрыв.
  • В некоторых случаях низкое рабочее давление позволяет использовать легкие баллоны.
  • Они могут быть сконструированы для бесшумной работы и без подачи воздуха, для использования в подводных лодках независимо от воздуха.
  • Они легко запускаются (хотя и медленно, после прогрева) и работают более эффективно в холодную погоду, в отличие от внутреннего сгорания, которое быстро запускается в теплую погоду, но не в холодную погоду.
  • Двигатель Стирлинга, используемый для перекачивания воды, может быть сконфигурирован так, чтобы вода охлаждала пространство сжатия. Это наиболее эффективно при перекачивании холодной воды.
  • Они очень гибкие. Они могут использоваться как ТЭЦ (комбинированное производство тепла и электроэнергии) зимой и как охладители летом.
  • Отработанное тепло легко улавливается (по сравнению с отработанным теплом от двигателя внутреннего сгорания), что делает двигатели Стирлинга полезными для систем с двумя выходами тепла и энергии.
Недостатки
Вопросы размера и стоимости
  • В конструкции двигателя Стирлинга требуются теплообменники для ввода тепла и вывода тепла, и они должны выдерживать давление рабочей жидкости, при котором давление пропорционально выходной мощности двигателя.Кроме того, теплообменник на стороне расширения часто имеет очень высокую температуру, поэтому материалы должны противостоять коррозионному воздействию источника тепла и иметь низкую ползучесть (деформацию). Обычно эти требования к материалам существенно увеличивают стоимость двигателя. Затраты на материалы и сборку высокотемпературного теплообменника обычно составляют 40% от общей стоимости двигателя. [51]
  • Все термодинамические циклы требуют больших перепадов температур для эффективной работы.В двигателе внешнего сгорания температура нагревателя всегда равна температуре расширения или превышает ее. Это означает, что металлургические требования к материалу нагревателя очень высокие. Это похоже на газовую турбину, но в отличие от двигателя Отто или дизельного двигателя, где температура расширения может намного превышать металлургический предел материалов двигателя, потому что входящий источник тепла не проходит через двигатель, поэтому материалы двигателя работают ближе к средней температуре рабочего газа.
  • Отвод отработанного тепла особенно затруднен, поскольку температура охлаждающей жидкости поддерживается на минимально возможном уровне для максимального повышения термического КПД. Это увеличивает размер радиаторов, что затрудняет упаковку. Наряду со стоимостью материалов это было одним из факторов, ограничивающих принятие двигателей Стирлинга в качестве тягачей для автомобилей. Для других приложений, таких как судовые двигательные установки и стационарные микрогенераторные системы, использующие комбинированное производство тепла и электроэнергии (ТЭЦ), высокая плотность мощности не требуется. [58]
Проблемы с мощностью и крутящим моментом
  • Двигатели Стирлинга, особенно те, которые работают при небольших перепадах температур, довольно велики по той мощности, которую они производят (т. Е. Имеют низкую удельную мощность). Это в первую очередь связано с коэффициентом теплопередачи газовой конвекции, который ограничивает тепловой поток, который может быть достигнут в типичном холодном теплообменнике, примерно до 500 Вт / (м 2 · K), а в горячем теплообменнике примерно до 500 –5000 Вт / (м 2 · К). [50] По сравнению с двигателями внутреннего сгорания, это усложняет для разработчиков двигателей передачу тепла в рабочий газ и из него. Из-за термического КПД требуемая теплопередача увеличивается с меньшим перепадом температур, а площадь теплообменника (и стоимость) для выходной мощности 1 кВт увеличивается со второй мощностью 1 / deltaT. Поэтому удельная стоимость двигателей с очень низким перепадом температур очень высока. Увеличение перепада температур и / или давления позволяет двигателям Стирлинга производить больше мощности, при условии, что теплообменники рассчитаны на повышенную тепловую нагрузку и могут обеспечивать необходимый конвектируемый тепловой поток.
  • Двигатель Стирлинга не запускается мгновенно; его буквально нужно «разогреть». Это верно для всех двигателей внешнего сгорания, но время прогрева может быть больше для Стирлингса, чем для других двигателей этого типа, таких как паровые двигатели. Двигатели Стирлинга лучше всего использовать в качестве двигателей с постоянной частотой вращения.
  • Выходная мощность Стирлинга обычно постоянна, и для ее регулировки иногда может потребоваться тщательная конструкция и дополнительные механизмы. Как правило, изменения мощности достигаются путем изменения рабочего объема двигателя (часто за счет использования устройства с наклонной шайбой на коленчатом валу), или путем изменения количества рабочей жидкости, или путем изменения фазового угла поршня / буйка, или в некоторых случаях просто путем изменение нагрузки двигателя.Это свойство является меньшим недостатком в гибридной электрической силовой установке или генерации энергоснабжения с «базовой нагрузкой», где фактически желательна постоянная выходная мощность.
Вопросы выбора газа

Используемый газ должен иметь низкую теплоемкость, чтобы заданное количество передаваемого тепла приводило к значительному повышению давления. Учитывая эту проблему, гелий был бы лучшим газом из-за его очень низкой теплоемкости. Воздух — это жизнеспособная рабочая жидкость, [59] , но кислород в воздушном двигателе с высоким давлением может вызвать несчастные случаи со смертельным исходом из-за взрыва смазочного масла. [51] После одной такой аварии Philips впервые применила другие газы, чтобы избежать такой опасности взрыва.

  • Низкая вязкость и высокая теплопроводность водорода делают его самым мощным рабочим газом, прежде всего потому, что двигатель может работать быстрее, чем с другими газами. Однако из-за абсорбции водорода и с учетом высокой скорости диффузии, связанной с этим газом с низким молекулярным весом, особенно при высоких температурах, H 2 будет просачиваться через твердый металл нагревателя.Диффузия через углеродистую сталь слишком высока для практического применения, но может быть приемлемо низкой для таких металлов, как алюминий или даже нержавеющая сталь. Определенная керамика также значительно снижает диффузию. Герметичные уплотнения сосуда высокого давления необходимы для поддержания давления внутри двигателя без восполнения потерь газа. Для двигателей с высокотемпературным дифференциалом (HTD) может потребоваться добавление вспомогательных систем для поддержания рабочего давления под высоким давлением. Эти системы могут быть баллоном для хранения газа или газогенератором. Водород может быть получен путем электролиза воды, воздействия пара на раскаленное углеродное топливо, путем газификации углеводородного топлива или путем реакции кислоты на металл.Водород также может вызывать охрупчивание металлов. Водород — легковоспламеняющийся газ, который может быть опасен при выбросе из двигателя.
  • В наиболее технически совершенных двигателях Стирлинга, таких как те, что были разработаны для правительственных лабораторий США, в качестве рабочего газа используется гелий, поскольку его эффективность и удельная мощность близки к водороду с меньшим количеством проблем с защитой материала. Гелий инертен, что устраняет любой риск воспламенения, как реального, так и предполагаемого. Гелий относительно дорог и должен поставляться в виде баллонного газа.Один тест показал, что водород на 5% (абсолютный) эффективнее гелия (24% относительно) в двигателе Стирлинга GPU-3. [60] Исследователь Аллан Орган продемонстрировал, что хорошо спроектированный воздушный двигатель теоретически имеет такой же КПД , как и гелиевый или водородный двигатель, но гелиевые и водородные двигатели в несколько раз мощнее на единицу объема .
  • В некоторых двигателях в качестве рабочей жидкости используется воздух или азот. Эти газы имеют гораздо более низкую удельную мощность (что увеличивает стоимость двигателя), но они более удобны в использовании и сводят к минимуму проблемы с удержанием и подачей газа (что снижает затраты).Использование сжатого воздуха в контакте с горючими материалами или веществами, такими как смазочное масло, представляет опасность взрыва, поскольку сжатый воздух содержит высокое парциальное давление кислорода. Однако кислород можно удалить из воздуха посредством реакции окисления или можно использовать азот в баллонах, который почти инертен и очень безопасен.
  • Другие возможные газы легче воздуха: метан и аммиак.

Приложения

Основная статья: Применение двигателя Стирлинга

Диапазон применения двигателя Стирлинга — от систем отопления и охлаждения до систем подводной энергии.Двигатель Стирлинга может работать в обратном направлении как тепловой насос для отопления или охлаждения. Другие области применения включают: комбинированное производство тепла и электроэнергии, производство солнечной энергии, криокулеры Стирлинга, тепловой насос, судовые двигатели и двигатели с низким перепадом температур

.

Альтернативы

Альтернативные устройства сбора тепловой энергии включают термогенератор. Термогенераторы допускают менее эффективное преобразование (5-10%), но могут быть полезны в ситуациях, когда конечным продуктом должно быть электричество, и когда небольшое преобразовательное устройство является критическим фактором. L.G. Тим (1981)

Библиография

  • S.D. Аллан (2005). «Самая большая в мире солнечная установка, использующая технологию двигателя Стирлинга». Новости систем чистой энергии. http://pesn.com/2005/08/11/9600147_Edison_Stirling_largest_solar/. Проверено 19 января 2009.
  • S. Backhaus; Дж. Свифт (2003). «Акустический тепловой двигатель Стирлинга: более эффективен, чем другие тепловые двигатели с неподвижными частями». Лос-Аламосская национальная лаборатория. Архивировано 1 августа 2008 года. http: // web.archive.org/web/20080801212651/http://www.lanl.gov/mst/engine/. Проверено 19 января 2009.
  • BBC News (31 октября 2003 г.). «Власть от народа». http://news.bbc.co.uk/2/hi/programmes/working_lunch/3231549.stm. Проверено 19 января 2009.
  • W.T. Бил (1971). «Тепловое устройство с циклом Стирлинга», патент США № № 3552120 . Предоставлено Research Corp 5 января 1971 г.
  • Г.М. Бенсон (1977). «Термальные генераторы», Патент США 4044558 . Предоставлено New Process Ind, 30 августа 1977 г.
  • Г.М. Бенсон (1973). «Тепловые генераторы». Протоколы 8-го заседания IECEC . Филадельфия: ASME. С. 182–189.
  • H.W. Брандхорст; J.A. Родек (2005). «Концепция Стирлинга мощностью 25 кВт для исследования лунной поверхности». В Международной федерации астронавтики (PDF). Труды 56-го Международного астронавтического конгресса . IAC-05-C3.P.05. http://pdf.aiaa.org/preview/CDReadyMIAF05_1429/PVIAC-05-C3.P.05.pdf.
  • Carbon Trust (2007). «Ускоритель Micro-CHP — Промежуточный отчет — Краткое содержание».http://www.carbontrust.co.uk/publications/publicationdetail.htm?productid=CTC727. Проверено 19 января 2009.
  • E.H. Кук-Ярборо; Э. Франклин; Дж. Гейсов; Р. Хоулетт; CD. Запад (1974). «Термомеханический генератор Харвелла». Протоколы 9-го заседания IECEC . Сан-Франциско: ASME. С. 1132–1136. Bibcode: 1974iece.conf.1132C.
  • E.H. Кук-Ярборо (1970). «Тепловые двигатели», Патент США 3548589 . Выдано Управлению по атомной энергии Великобритании 22 декабря 1970 г.
  • Э.Х. Кук-Ярборо (1967). «Предложение по тепловому невращающемуся электрическому генератору переменного тока», Меморандум Харвелла AERE-M881 .
  • Р. Чузе; Б. Карсон (1992). Сосуды под давлением, упрощенный код ASME . Макгроу – Хилл. ISBN 0-070-10939-7.
  • Т. Финкельштейн; А.Дж. Орган (2001). Воздушные двигатели . Профессиональное инженерное издательство. ISBN 1-86058-338-5.
  • C.M. Харгривз (1991). Двигатель Стирлинга Philips . Elsevier Science.ISBN 0-444-88463-7.
  • Дж. Харрисон (2008). «Что такое микрогенерация?». Claverton Energy Research Group. http://www.claverton-energy.com/what-is-microgeneration.html. Проверено 19 января 2009.
  • Хартфордский паровой котел (а). «Хартфордский паровой котел: мощность пара и промышленная революция». http://www.hsb.com/about.asp?id=50. Проверено 18 января 2009.
  • Дж. Хаши (2008). «Модифицированный двигатель Стирлинга с большей удельной мощностью». Конкурс дизайна будущего .НАСА и SolidWorks. http://www.createthefuturecontest.com/pages/view/entriesdetail.html?entryID=1329. Проверено 19 января 2009.
  • З. Херцог (2008). «Анализ Шмидта». http://mac6.ma.psu.edu/stirling/simulations/isothermal/schmidt.html. Проверено 18 января 2009.
  • К. Хирата (1998). «Разработка и изготовление опытного образца двигателя». Национальный институт морских исследований. http://www.nmri.go.jp/eng/khirata/stirling/docpaper/sekkeie.html. Проверено 18 января 2009.
  • К. Хирата (1997).»Теория Шмидта для двигателей Стирлинга». http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm. Проверено 18 января 2009.
  • К. Хирата (а). «Двигатель Стирлинга Palm Top». http://www.bekkoame.ne.jp/~khirata/academic/kiriki/models/plm_top.html. Проверено 18 января 2009.
  • М. Кевени (2000a). «Двухцилиндровый двигатель Стирлинга». animatedengines.com. http://www.animatedengines.com/vstirling.shtml. Проверено 18 января 2009.
  • М. Кевени (2000b). «Одноцилиндровый двигатель Стирлинга».animatedengines.com. http://www.animatedengines.com/stirling.shtml. Проверено 18 января 2009.
  • Kockums. «Двигатель Стирлинга: двигатель будущего». http://www.kockums.se/products/kockumsstirlingm.html. Проверено 18 января 2009.
  • Б. Конгтрагул; С. Вонгвизес (2003). «Обзор двигателей Стирлинга на солнечных батареях и низкотемпературных двигателей Стирлинга». Обзоры возобновляемой и устойчивой энергетики 7 (2): 131–154. DOI: 10.1016 / S1364-0321 (02) 00053-9.
  • Д. Ляо (а). «Принципы работы». http://www.logicsys.com.tw/wrkbas.htm. Проверено 18 января 2009.
  • W.R. Martini (1983). «Руководство по проектированию двигателя Стирлинга (2-е изд.)» (17,9 МБ PDF). НАСА. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830022057_1983022057.pdf. Проверено 19 января 2009.
  • Micro-Star International (2008 г.). «Первый в мире воздушный охладитель без мощности на материнской плате!». http://global.msi.com.tw/index.php?func=newsdesc&news_no=591. Проверено 19 января 2009.
  • А. Несмит (1985). «Долгий, трудный путь к стандартизации». Смитсоновский журнал. http://www.asme.org/Communities/History/Resources/Long_Arduous_March_Toward.cfm. Проверено 18 января 2009.
  • A.J. Орган (2008а). «1818 год и все такое». Коммуникабельность. http://web.me.com/allan.j.o/Communicable_Insight/1818_and_all_that.html. Проверено 18 января 2009.
  • A.J. Орган (2008b). «Почему Воздух?». Коммуникабельность. http://web.me.com/allan.j.o/Communicable_Insight/Why_air.html. Проверено 18 января 2009.
  • A.J. Орган (2007). Пневматический двигатель: мощность цикла Стирлинга для устойчивого будущего . Издательство Вудхед. ISBN 1-845-69231-4.
  • A.J. Орган (1997). Регенератор и двигатель Стирлинга . Вайли. ISBN 1-860-58010-6.
  • A.J. Орган (1992). Термодинамика и газовая динамика машины цикла Стирлинга . Издательство Кембриджского университета. ISBN 0-521041363-х.
  • PASCO Scientific (1995). «Руководство по эксплуатации и руководство по эксперименту для модели PASCO scientific SE-8575» (PDF).ftp://ftp.pasco.com/Support/Documents/English/SE/SE-8575/012-06055A.pdf. Проверено 18 января 2009.
  • Д. Постл (1873 г.). «Производство холода для консервирования животных продуктов питания», патент Великобритании № № 709 , выдан 26 февраля 1873 г.
  • Precer Group (а). «Технология транспортных средств на твердом биотопливе» (PDF). http://www.precer.com/Files/Precer_Data_Sheet_D.pdf. Проверено 19 января 2009.
  • Квазитурбинное агентство (а). «Квазитурбина Стирлинга — двигатель горячего воздуха». http: //quasiturbine.promci.qc.ca / ETypeStirling.htm. Проверено 18 января 2009.
  • Р. Сиер (1999). Тепловоздушные калорические двигатели и двигатели Стирлинга: история . 1 (1-е (пересмотренное) изд.). L.A. Mair. ISBN 0-9526417-0-4.
  • Р. Сиер (1995). Преподобный Роберт Стирлинг Д.Д .: Биография изобретателя теплового экономайзера и двигателя цикла Стирлинга . L.A Mair. ISBN 0-9526417-0-4.
  • Ф. Старр (2001). «Энергия для людей: двигатели Стирлинга для бытовых ТЭЦ» (PDF). Ingenia (8): 27–32.http://www.ingenia.org.uk/ingenia/issues/issue8/Starr.pdf. Проверено 18 января 2009.
  • WADE (а). «Двигатели Стирлинга». http://www.localpower.org/deb_tech_se.html. Проверено 18 января 2009.
  • L.G. Тиме (1981). «Результаты базовых и автомобильных испытаний двигателя Стирлинга GPU-3» (14,35 МБ PDF). НАСА. OSTI 6321358. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810023544_1981023544.pdf. Проверено 19 января 2009.
  • Y. Timoumi; И. Тлили; С.Б. Насралла (2008).«Оптимизация производительности двигателей Стирлинга». Возобновляемая энергия 33 (9): 2134–2144. DOI: 10.1016 / j.renene.2007.12.012.
  • Г. Уокер (1971). «Конспект семинара по двигателям Стирлинга», Университет Бата. Печатается в 1978 году.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.