Какой аккумулятор лучше никель кадмиевый или литий ионный: Ni-Cd, Ni-MH и Li-Ion аккумуляторы. В чем разница. Плюсы и минусы — купить на radiosila.ru


0
Categories : Разное

Содержание

Никель-кадмиевые аккумуляторы или литий-ионные — что выбрать

Здравствуйте! В этой статье я расскажу, что лучше выбрать — никель-кадмиевые аккумуляторы или литий-ионные.

При выборе аккумуляторного инструмента всегда приходиться думать, с каким типом батарей его купить — литий-ионными (Li-ion) или никель-кадмиевыми (Ni-Cd). Многие уже наслышаны о плюсах литий-иона, тем более, что и в сотовом телефоне у каждого стоит именно он. Но не все так просто. В этой статье я расскажу, в чем здесь разница.

Различие между литий-ионным и никель-кадмиевым аккумуляторами

Здесь я буду говорить о разнице в эксплуатационных свойствах Li-ion и Ni-Cd.

Итак, главным отличием литий-ионных батарей от никель-кадмиевых является то, что первые не имеют эффекта памяти, а вторые, соответственно, имеют.

Что такое эффект памяти? Это очень неприятное свойство никель-кадмия, заключается которое в следующем. Если вы поставите его на зарядку и, не дав полностью зарядиться, снимите, то он запоминает ту набранную емкость, до которой успел зарядиться, и при следующих зарядках, сколько его не держи, зарядится только до той отметки, которую запомнил при первой неполной зарядке. Отсюда и название — эффект памяти.

Также верно и обратное — если поставить такой аккумулятор заряжаться, не дав ему полностью разрядиться, то он запоминает отметку, до которой ему дали разрядится и в дальнейшем, достигая ее, разряжаться не будет, и соответственно техника работать от него не сможет.

И вот всех этих «радостей» лишен литий-ионный аккумулятор. Поэтому многие, покупая аккумуляторный инструмент, стремятся приобрести его с таким питающим элементом именно из-за отсутствия у него эффекта памяти.

Вторым преимуществом литий-ионника перед никель-кадмиевым является то, что он практически не теряет своего заряда, если просто лежит без дела. Даже пролежав два года без дела, потеря составит не более 20%. Этим не может похвастаться никель-кадмий, который теряет весь свой заряд за полгода простоя. А если пролежит без дела целый год, то может высадиться в ноль и потом совсем не сможет зарядиться. Поэтому раз в полгода его нужно вставлять в зарядное устройство и полностью зарядить. Ну, если вы, конечно, хотите, чтобы он служил у вас долго.

И вроде бы всё указывает на то, что нужно брать аппараты с литий-ионом. Однако следует сказать, что стоимость их значительно больше. Поэтому многие предпочтут сэкономить, и купить технику с никель-кадмием, посчитав, что можно и поуделять немного больше внимания процессу зарядки, чем платить лишние немалые деньги. Тем более, что срок эксплуатации у обоих типов примерно одинаков (конечно, если правильно эксплуатировать никель-кадмий).

Но самым существенным недостатком литий-ионок является невозможность их длительной эксплуатации при минусовых температурах. Некоторые наверное замечали, как у них на сотовом телефоне, пролежавшем долго на холоде, отметка уровня заряда падала книзу, либо аппарат совсем выключался. Но затем, при переносе телефона в тепло, тот снова показывал полный заряд. Это как раз проявление этого неприятного свойства.

Если в случае с телефоном такая неприятность простительна, так как его итак обычно держат в кармане, где его греет тепло вашего тела, то вот с аккумуляторным инструментом, которым нужно трудиться на улице, когда за бортом холодно, такое свойство просто не позволит выполнить задуманное дело. Даже поставленная на холоде в зарядное устройство литий-ионная батарея не показывает признаков жизни и абсолютно не заряжается.

Стоит, правда, заметить, что у разных моделей нижняя температурная отметка, при которой ток перестает отдаваться, отличается. Есть такие, которые перестают работать при -5, а есть и те, которые выдерживают и -15 градусов.

И вот в этом случае понадобятся никель-кадмиевые батареи, которые и при минус двадцати могут держать свою емкость, пусть и не на 100%. Но поработать с ними получится в любом случае.

Вывод

Таким образом, при всех плюсах литий-иона, всегда нужно помнить, что есть условия, когда без никель-кадмиевых аккумуляторов не обойтись. Поэтому покупайте первый вариант, если вы точно знаете, что не будете трудиться в отрицательных (да и положительных близких к нулю) температурах, либо работа в таких условиях будет кратковременной и рядом есть теплое помещение, так как заморочек с их эксплуатацией действительно меньше. Однако на холоде без никель-кадмиевого аккумулятора не обойтись.

Обновление информации. Статья писалась в 2015 году. На момент 2018 года она уже не особо актуальна. Во-первых, литий-ионные аккумуляторы значительно подешевели с тех пор. Во-вторых, на холоде они себя сейчас тоже чувствуют довольно уверенно. Поэтому все производители инструмента на сегодня стали выпускать аккумуляторную технику только с литий-ионными батареями. В продаже еще можно встретить и технику с батареями на основе никеля и кадмия, однако их все меньше и меньше, так как свою актуальность они потеряли.

На этом заканчиваю! Спасибо за внимание! Читайте и другие статьи на моем сайте и до новых встреч!

Читайте также:

Что нужно знать про никель-кадмиевые аккумуляторы

На современном этапе существует множество аккумуляторов, которые имеют разный химический состав и, по причине присутствия в них тех или иных элементов, свои характерные особенности и преимущества в эксплуатации. Никель-кадмиевые аккумуляторы появились давно. Но до сих пор являются популярными и нужными в разных сферах человеческой деятельности.

Содержание статьи

Из истории создания

Первые щелочные Ni-Сd аккумуляторы появились еще в конце ХХ века. Их изобрел шведский ученый Вальдмар Юнгнер, в качестве положительного заряда использовав никель, а кадмий — в качестве отрицательного. Несмотря на очевидную пользу этого изобретения, по тем временам массовое производство таких батарей было весьма дорогостоящим и энергоемким. Поэтому было отложено на промежуток почти в 50 лет.

30-е годы прошлого столетия замечательны тем, что именно тогда была создана техника внедрения химически активных материалов пластин на пористый электрод, покрытый никелем. Массовое же производство Ni-Cd аккумуляторов началось после 50-х годов.

Основные характеристики и преимущества

Никель-кадмиевые аккумуляторы, в большинстве случаев, имеют цилиндрическую форму. Поэтому в простонародье их часто называют «банками». Есть и плоские Ni батарейки — например, для часов. Все зарядные элементы такого типа имеют сравнительно небольшую емкость, если сопоставлять их с никель-металлогидридными АКБ (Ni-MH), появившимися значительно позже с целью усовершенствования Ni-Cd аккумуляторов.

Однако более низкие показатели емкости не являются тем недостатком, который мог бы стать причиной для того, чтобы старый добрый кадмиевый аккумулятор был окончательно снят с производства. Один из его несомненных плюсов — это то, что при эксплулатации он нагревается не так быстро, как MH. Это значительно снижает риск его перегрева и преждевременного выхода из строя.

Более медленный процесс нагревания Ni-Cd обусловлен тем, что химические реакции, протекающие внутри них, являются эндотермическими. Иными словами, выделяемое во время реакций тепло поглощается внутри. Что касается MH, они отличаются от кадмиевых экзотермическими реакциями с выделением большого количества тепла. В связи с этим MH нагреваются гораздо быстрее и могут «перегореть», если вовремя не прекратить их использование.

Ni-Сd аккумуляторы имеют плотный металлический корпус, отличающийся повышенной прочностью и хорошей герметичностью. Они способны устоять при любых химических реакциях внутри и выдержать большое давление газов даже в самых худших условиях. Вплоть до понижения температуры до -40°С. Никель кадмиевые-аккумуляторы не подвержены риску самовозгорания, в отличие от современных литиевых.

Среди них есть мощные и надежные промышленные аккумуляторы Ni, которые могут полноценно работать в течение 20-25 лет. И, несмотря на то, что на смену этим АКБ уже давно пришли MH и литиевые с большей емкостью, Ni-Cd аккумуляторы продолжают активно применяться и по сей день.

Если говорить о ценовой категории, стоимость Ni-Cd значительно ниже, чем у других батарей. Это также является одним из их основных плюсов.

Сфера применения

Небольшие Ni-Cd аккумуляторы широко используются для питания различной бытовой техники и аппаратуры, преимущественно, в тех случаях, когда тот или иной прибор потребляет большое количество тока. Стандартные «банки» до сих пор обеспечивают работу электродрелей и шуруповертов. Элементы больших размеров незаменимы в общественном транспорте. Например, в троллейбусах или трамваях с целью питания цепей их управления, в судоходном деле и особенно в сфере авиации как бортовые вторичные источники тока.

Особенности эксплуатации

Поскольку Ni-Cd аккумуляторы заметно нагреваются, только если они заряжены полностью, большая часть устройств «понимает» это в качестве сигнала, по которому следует прекращать процесс зарядки. Для того чтобы они работали дольше, их рекомендуется быстро заряжать, а использовать — до полного разряда: в отличие от MH, никель-кадмиевые аккумуляторы глубокой разрядки не боятся.

Этот вид АКБ — единственный из элементов питания, которые рекомендуется хранить полностью разряженными, в то время, как MH следует хранить заряженными полностью, и им периодически нужна проверка напряжения на выходе. Такая разница, при существенном отличии в эксплуатации, безусловно, является еще одним очевидным пунктом в пользу Ni-Cd.

При долгом хранении без использования в разряженном виде с батарейками не случится ничего страшного. Но, чтобы привести их в рабочее состояние, нужно два-три раза провести им полный цикл «заряд-разряд». Лучше делать это незадолго до применения, можно за сутки, и тогда никель-кадмиевые аккумуляторы будут работать с оптимальной токоотдачей.

Любой Ni-Cd, применяемый в быту, при его питании током небольшой величины и периодической неполной разрядкой может значительно потерять емкость, что создает впечатление полного выхода АКБ из строя. Если Ni-Cd долгое время находился на подзарядке, например, в устройстве с постоянным питанием, он тоже лишится определенного показателя ёмкости, хотя уровень его напряжения, при этом, будет верным.

Это значит, что использовать Ni-Cd в режиме постоянной подпитки и «недоразряда» не стоит, а если такое все же произошло с батарейкой, одного цикла глубокой разрядки с последующим полным зарядом будет достаточно для того, чтобы емкость была восстановлена.

Такой эффект называется «эффектом памяти» и возникает, когда не до конца разряженная батарея подвергалась подзарядке раньше, чем она разрядится полностью. Дело в том, что при производстве никель-кадмиевых аккумуляторов используются так называемые прессованные электроды. Это очень удобно, так как «прессовка» высокотехнологична и обходится дешевле. Но именно ее химический состав склонен к «эффекту памяти» — иными словами, к появлению в электрохимическом составе АКБ «лишнего» двойного электрического слоя в виде крупных кристаллов, что обусловливает снижение напряжения.

Именно поэтому Ni-Cd элементы так «любят» полный и глубокий разряд, после которого, «очистив память», они могут долгое время работать полноценно.

Восстановление никель-кадмиевого аккумулятора

Среди любителей электроники постоянно ведутся споры и разговоры о том, что делать, если Ni-Cd аккумулятор вышел из строя, как восстановить Ni и насколько целесообразно это делать вообще. Конечно, гораздо проще сразу приобрести новую батарею. Но бывает и так, что в ближайшее время это сделать невозможно: замены просто не оказалось под рукой, а ближайший магазин находится далековато. Поэтому тем, кто постоянно работает, например, с электрическими инструментами, время от времени приходится заниматься восстановлением никель-кадмиевых аккумуляторов очень интересными способами. Как произвести ремонт аккумулятора шуруповерта, например?

Восстановление водой

Можно попробовать провести восстановление работоспособности Ni-Cd аккумуляторов с помощью самого обычного электролита в виде дистилированной воды.

Для этого понадобится несколько нехитрых инструментов и приспособлений:

  • паяльная кислота;
  • одноразовый шприц;

    паяльник;

  • немного дистилированной воды.

Обычно аккумуляторный блок, находящийся внутри дрели или шуруповерта, выглядит как связка из нескольких металлических «банок», обернутых плотной бумагой. Для того чтобы понять, какая «банка» в связке самая слабая, нужно вначале измерить напряжение на полюсах каждого элемента. Как проверить напряжение? Очень просто, с помощью мультиметра или тестера. Чаще всего, показатель напряжения у самых слабых «банок» близок или равен нулю.

Для того чтобы начать процесс восстановления, нужно просверлить в батарейке небольшое отверстие, предварительно освободив ее от бумаги или этикетки. Сделать это можно с помощью шуруповерта, используя острый саморез №16. Важно позаботиться о том, чтобы не повредить внутренность аккумулятора, а просверлить только его внешнюю оболочку.

В данном случае стоит отметить еще одно несомненное преимущество: в таких батареях, вследствие их конструкции, повышенной герметичности и особенности протекающих химических реакций, не происходит самопроизвольного возгорания. Поэтому любительские методы возвращения никель-кадмиевых элементов к жизни являются безопасными, в отличие от проведения подобного рода манипуляций с современными литиевыми батареями, склонными к взрывам и вздутиям.

В одноразовый шприц набирается 1 мл дистилированной воды, и АКБ постепенно заполняется ею. При этом важно не торопиться, следить за тем, чтобы вода постепенно проникала внутрь батареи. Дистилированная вода нужна для возвращения и создания необходимой плотности электролита внутри АКБ. После того как вода будет залита, отверстие закрывается паяльной кислотой, которая берется на спичку, и запаивается хорошо разогретым паяльником.

Некоторые умельцы утверждают, что, если вместо дистилированной воды залить внутрь батареи электролит от шахтерских фонариков, АКБ будет работать гораздо лучше и дольше.

В заключение нужно снова провести замеры напряжения мультиметром и поставить аккумулятор на зарядку. Конечно, паяная батарея прослужит недолго, но это может помочь выиграть какое-то время перед приобретением новой.

Восстановление методом запзаппинга

Для никель-кадмиевых аккумуляторов существует проверенный, но весьма рискованный метод восстановления, который называется запзаппинг. Суть его заключается в том, что батарейки подвергаются коротким разрядам очень высоких токов, в десятки раз превышающих норму. Каждый элемент в буквальном смысле слова «прожигается» короткосекундными токовыми импульсами в 10, 20 ампер и выше.

Запзаппинг требует хорошей подготовки любителя электроники и соблюдения техники безопасности в виде защитных очков и, желательно, спецодежды. Утверждается, что он восстанавливает элементы, не употреблявшиеся 20 лет и более. Следует помнить о том, что запзаппинг применим исключительно к никель-кадмиевым аккумуляторам. Восстановление Ni-MH аккумуляторов таким способом проводить не рекомендуется.

Цикл разряд-заряд

Для того чтобы устранить «эффект памяти», нужно разрядить АКБ до 0,8-1 вольта, после чего полностью зарядить ее снова. Если батарея не восстанавливалась в течение долгого времени, таких циклов можно провести несколько, а для минимизации «эффекта памяти» тренировать батарею таким образом желательно раз в месяц.

Что же касается популярного «школьного» метода, подразумевающего заморозку NiСd или NiMH аккумуляторов в морозильной камере — невзирая на то, что эффективность этого способа весьма сомнительна, в сети можно найти большое количество информации о «восстановлении» батареек путем помещения их в холодильник. На самом деле, лучше применить способ восстановления элементов дистиллированной водой — по крайней мере, в данном случае шансов реанимировать их будет гораздо больше.

Итак, никель-кадмиевые аккумуляторы не уступают современным батареям по ряду преимуществ своих технических характеристик. Они по-прежнему надежные, прочные, недорогие и максимально безопасны в применении.

В чем разница между Ni-Cad, Ni-MH и Li-Ion аккумуляторами

Ответы на вопросы, изложенные в данной статье, справедливы для аккумуляторов любых устройств, основанных на Ni-Cad, Ni-MH, Li-Ion, Li-poly технологиях.   

Аккумуляторы для портативных устройств, таких как ноутбук, видеокамера, фотоаппарат, мобильный телефон и т.д., как правило, изготавливаются на основе Никель-кадмиевых (Ni-Cad), Никель-металлогидридных (Ni-MH) или Литиево-ионных (Li-Ion) аккумуляторных элементов. Каждый тип имеет свои отличительные особенности:

Ni-Cad и Ni-MH

Главное отличие между ними в том, что Ni-MH (из этих двух это наиболее новая технология) имеет большую емкость, чем Ni-Cad. Иными словами, емкость Ni-MH аккумуляторных элементов примерно в два раза больше, чем у Ni-Cad собратьев, что дает нам увеличение времени работы без увеличения размеров и веса батареи. Ni-MH элементы имеют еще одно важное преимущество — они значительно менее подвержены так называемому «эффекту памяти», чем Ni-Cad элементы. Также Ni-MH элементы экологически более безопасны, благодаря отсутствию в них тяжелых металлов.

Li-Ion

Сегодня литиево-ионные аккумуляторы стали стандартом в потребительской электронике. Li-Ion элементы имеют вдвое большую емкость, чем Ni-MH элементы, и весят при этом на треть меньше. Они абсолютно не подвержены «эффекту памяти». Недостатками данного типа являются более высокая стоимость и узкий диапазон рабочей температуры.

Дальнейшим развитием Li-Ion технологии является Li-Poly (Литий-полимер). В Li-Poly аккумуляторных элементах отсутствует жидкий электролит, что исключает возможность его утечки. Литиево-полимерные аккумуляторные элементы легче, надежнее и более безопасны, чем их предшественники, более эффективно работают при отрицательных температурах.

Что такое «Аккумуляторный элемент»?

Большинство современных аккумуляторов для ноутбуков и любых других электронных устройств состоят из аккумуляторных элементов, накапливающих электроэнергию, и управляющей электроники.

Розовые цилиндры на фото это аккумуляторные элементы, тип 18650. Есть и другие типы аккумуляторных элементов, но суть одна: в мире существует великое множество аккумуляторов самых разнообразных размеров и форм, но внутри большинства из них находятся стандартные аккумуляторные элементы. От качества этих элементов напрямую зависит качество работы и срок службы аккумулятора.

Что такое «усиленный аккумулятор»?

«Усиленный аккумулятор» или «аккумулятор повышенной емкости» отличается от стандартного аккумулятора увеличенной емкостью и, как правило, увеличенными габаритами и весом, т.к. внутри такого аккумулятора больше аккумуляторных элементов. Если аккумулятор размещается под крышкой устройства, то часто в комплекте с аккумулятором идет новая крышка, т.к. под «родную» крышку усиленный аккумулятор не влезает.

Что такое «эффект памяти»?

Когда мы заряжаем аккумулятор, это называется «цикл заряда». Когда мы используем аккумулятор, это называется «цикл разряда».

Эффект памяти заключается в том, что аккумулятор «помнит» сколько энергии он отдал в цикле разряда и считает, что его емкость равна количеству отданной энергии. Поэтому, если начать заряжать не до конца разряженную батарею, то может возникнуть «эффект памяти» и батарея будет накапливать меньше энергии, чем могла бы. Чтобы этого не происходило, рекомендуется полностью разряжать (подождать, пока ваше устройство полностью израсходует заряд батареи) и полностью заряжать ваш аккумулятор.

Эффект памяти вызван химическими процессами, происходящими внутри аккумуляторных элементов. Этому эффекту подвержены Ni-Cad и, в меньшей степени, Ni-MH элементы. Li-Ion / Li-Poly элементы не имеют «эффекта памяти» вообще.

Можно заменить Ni-Cad / Ni-MH аккумулятор на более современный Li-Ion аналог?

Только в том случае, если производитель вашего устройства предусмотрел такую возможность. Иначе такой аккумулятор ваше устройство «переварить» не сможет. Ni-Cad, Ni-MH и Li-Ion элементы сильно отличаются друг от друга по способу заряда и другим параметрам.

Получил новый аккумулятор, он не работает / не заряжается, почему?

Новый аккумулятор, как правило, не заряжен, либо заряжен частично. Необходимо полностью зарядить аккумулятор. Рекомендуется первый раз оставить его на зарядке на ночь.

Довольно часто при первой зарядке аккумулятор показывает полный заряд уже через 10-20 минут, но фактически не заряжается. Это нормально, просто выньте аккумулятор и вставьте его на место, после чего продолжите зарядку. Возможно, это придется проделать несколько раз. В процессе заряда аккумулятор может нагреваться, это нормально.

Как продлить жизнь батареи и использовать ее максимально эффективно?

  • Разработайте новую батарею – несколько раз полностью зарядите и полностью разрядите её, после этого батарея достигнет своей максимальной емкости. Этот процесс называется тренировкой батареи.
  • Держите контакты батареи чистыми, ни в коем случае не замыкайте их.
  • Разряжайте и заряжайте батарею до конца
  • Батарея должна работать – не оставляйте батарею без работы на длительное время (несколько месяцев и более). Рекомендуется использовать батарею хотя бы один раз в месяц.
  • Используйте функции энергосбережения вашего ноутбука, чтобы увеличить время работы батареи.
  • Не вскрывайте, не бросайте, не нагревайте и не мочите батарею.
Как правильно хранить аккумулятор?

Это не очень хорошая идея, аккумулятор должен работать. Если вы все-таки не используете аккумулятор, то храните его в темном, сухом, прохладном месте, вдалеке от источников тепла и металлических объектов. Раз в несколько месяцев полностью зарядите аккумулятор. Li-Ion аккумуляторы нельзя хранить полностью разряженными! В процессе хранения аккумулятор постепенно теряет заряд, не забудьте полностью зарядить его перед использованием.

Каков срок службы аккумулятора?

В нормальных условиях, как правило, 500-800 циклов заряда / разряда (до 3 лет). Необходимо помнить о том, что аккумулятор начинает «стареть» с момента своего изготовления, не зависимо от того, используется он или нет.

Безопасно ли использовать «неоригинальные» аккумуляторы? Это не повредит мой ноутбук /камеру / телефон?

С вашим устройством все будет в порядке. Более того, сторонние производители часто делают более емкие аккумуляторы, чем оригинальный производитель. Особенно это характерно для старых моделей, к которым интерес «родителя» давно потерян.

Современные аккумуляторные батареи сложный и довольно «капризный» продукт, даже самые именитые бренды регулярно оказываются в центре скандалов с некачественными батареями.

Что такое «калибровка» аккумулятора ноутбука?

В BIOS’e многих ноутбуков есть пункт «калибровка батареи». Фактически это полный цикл заряда / разряда аккумулятора для ноутбука. Это нужно для того, чтобы сбросить накапливающиеся в процессе эксплуатации ошибки контроллера аккумулятора. Рекомендуется производить калибровку после длительного хранения аккумулятора, потери его емкости, ошибках предсказания времени автономной работы аккумулятора.

Если в вашем устройстве нет функции «калибровка аккумулятора», просто разрядите и зарядите аккумулятор несколько раз до конца.

Мой ноутбук Sony отказывается работать с неоригинальной батареей. Что делать?

Симптомы: Через минуту после старта Windows выскакивает сообщение об ошибке «Аккумулятор неправильно вставлен …», аккумулятор не заряжается, ноутбук с неоригинальной батареей не загружается.

Необходимо отключить программу Sony ISB Utility (ISBMgr.exe). Либо найдите и удалите этот файл, либо удалите его из автозагрузки (Пуск > выполнить > msconfig > автозагрузка). Главное назначение этой программы заставить вас покупать дорогостоящие аккумуляторы Sony.

Ищу аккумулятор «GB/T 18287 — 2000» …

«GB/T 18287 — 2000» это маркировка стандарта Li-ion батарей, которым обозначаются практически все Li-ion батареи для телефонов, КПК, смартфонов и других подобных устройств. Данная маркировка не является номером (part number) или названием конкретной батареи.

характеристики, как зарядить, проверка и восстановление

Автор Aluarius На чтение 7 мин. Просмотров 523 Опубликовано

Изобретённые больше ста лет назад, Ni-Cd аккумуляторы сохраняют свою популярностью до сих пор. Это обусловлено долговечностью, морозостойкостью и быстрой зарядкой. Сейчас такие аккумуляторы можно встретить как в бытовой технике, так и в промышленных, и военных масштабах.

Никель-кадмиевые аккумуляторы — что это, история создания

Батарея была создана Вагнером Юнгером в 1899 году. Но из-за дороговизны добычи используемых материалов, дальнейшие разработки отложили. Приобрёл большую популярность использования после 1932 года, когда изобрели метод, как осадить активное вещество на никелевый электрод. С 1947 года, когда учёными был разработан способ восстановления газов внутри батарее при зарядке, начали производить аккумуляторы в герметичном корпусе. Такие мы видим сейчас в электрических приборах.

Ni cad аккумуляторы состоят из двух разноимённо заряженных электродов, разделённых сепаратом. Все элементы помещены в электролит и находятся в герметичном корпусе из пластика или металла.

В отличие от других батарей, никелевые аккумуляторы не перегреваются из-за низкого сопротивления, что уменьшает возможность перегрева. Нагревается только после полной зарядки, как индикатор окончания заряда.

Сфера применения

Широко применяются для бытовой техники и аппаратуры, потребляющие большое количество тока. В портативной технике: шуруповерты и дрели. В общественном транспорте используют для питания цепей управления троллейбусов и трамваев, а в морском и речном транспорте и самолётах в качестве вторичного источника сырья.
Плюсы применения: долговечны, простота обслуживания, легкие и почти не чувствительны к низким температурам.

Минусы: содержат ядовитый кадмий, неэкологичное использование. Запрещено утилизировать в бытовой мусор, нужно использовать специальные контейнеры для переработки батареек.

Основные характеристики

Ёмкость аккумулятора: 45-65Вт

Циклы заряд-разряд

При соблюдении условий эксплуатации количество циклов доходит до 1000. Промышленные сохраняют работоспособность в течение 25 лет.

Никель-кадмиевые аккумуляторы могут стареть раньше из-за наличия эффекта памяти – при зарядке не полностью разряженной батарее, следующий разряд происходит до этого значения ёмкости. Перед зарядкой рекомендуется определить уровень заряженности элементов.

В отличие от других не теряет свои свойства при хранении в разряженном состоянии.

Тепловыделение

Небольшой нагрев снижает риск перегрева и увеличивает срок эксплуатации аккумулятора. Это обусловлено протекающими внутри эндотермическими химическими реакциями, поглощающими выделяемое тепло.

Рабочая температура:

Аккумулятор работает при большой амплитуде температур: от -50 до +40оС.
корпус батареи:
Обязательно герметичный и прочный.

По форме:

  • Плоский;
  • Кубический;
  • Цилиндрический.

На рынке существуют разные размеры батарей, наибольшей популярностью пользуются «банки».

Правила эксплуатации

Чтобы аккумулятор служил как можно дольше, нужно правильно его заряжать и соблюдать правила эксплуатации.

Как правильно заряжать аккумулятор

Для того, чтобы увеличить срок службы, перед зарядкой необходимо убедиться, что аккумулятор полностью разряжен. При неполной разрядке во время эксплуатации, эффективная площадь электродов будет снижаться. Разряжая каждый раз батарею до 0,9-1 Вольт, можно сохранить параметры батареи на более долгое время.

Перед первым использованием аккумулятора, его нужно потренировать – провести несколько полных циклов заряд-разряд. Обычно достаточно пяти, но на некоторых моделей производители рекомендуют провести больше, поэтому соблюдайте указанные в инструкции эксплуатации рекомендации. Так батарея начнет работать на заявленных параметрах.

Также, цикл тренировки нужно проводить после хранения дольше полугода.

Как хранить батареи

Если вы не планируете пользоваться Ni-Cd аккумулятором – не нужно его заряжать, ни отлично хранятся в разряженном состоянии. При долгом хранении в заряженном виде характеристики батареи начинают снижаться.

Восстановление ni-cd аккумуляторов

Выбрасывать вышедшие из строя батареи – неэкологично и не так выгодно. Во многих случаях, неработающие батареи можно восстановить самостоятельно. Сделать ремонт батарей можно при помощи дистиллированной воды или импульса тока.

Как проверить батареи

Для начала нужно проверить исправность аккумулятора. Сделать это можно самостоятельно при помощи мультиметра. Во время первой диагностике определяем силу и напряжение аккумулятора при зарядке устройства. Через полчаса после начала зарядки, прибор должен показывать 13В, спустя час значение должно увеличиться на 0,5В. Максимальная отметка напряжения -17В. Сила тока у исправного устройства за час – 1 ампер.

При проверке тестовое устройство переводим в режим DC – проверка напряжения. А переключатель режимов в значении – 20В, то есть напряжение устройства не превысит эту отметку. Величина измерения напряжения у полностью заряженного аккумулятора должна быть равна количеству батареек в нём, умноженной на напряжение каждой из них.
если значение напряжения ниже – аккумулятор неисправен.

Теперь нужно понять, какая из батареек не работает. Выпаиваем каждую из них и измеряем напряжение на полюсах. Красный щуп нужно приложить к положительному полюсу, а чёрный – к отрицательному. В электрических приборах напряжение должно быть 3,6-3,8В.
Если параметры отклоняются, значит батарейки неисправны.

Как восстановить никель кадмиевый аккумулятор читайте далее.

Восстановление водой, пошагово

Восстановление дистиллированной водой считается более эффективным и долговечным.

  1. Перед тем, как восстанавливать аккумулятор, необходимо обнаружить элементы с нулевым напряжением.
  2. Затем, в их корпусе с помощью шуруповерта с тонким сверлом проделываем небольшое отверстие в батарее с нулевым напряжением.
    Заливаем в это отверстие 1см3 дистиллированной воды.
  3. Оставляем на некоторое время батареи.
  4. Замеряем напряжение.
  5. Заряжаем батареи.
  6. Если восстановление произошло успешно – запаиваем батареи или заделываем герметиком.
    Собираем аккумулятор.
  7. Проводим полную зарядку аккумулятора.
  8. Если напряжение не увеличилось – проделываем процедуру ещё до тех пор, пока напряжение не восстановится.

Восстановление с помощью высокого тока

Восстановить аккумулятор так же можно при помощи импульсного разряда.

Необходимые для восстановления приборы:

  • Мультиметр;
  • Источник питания;
  • Средства защиты.

Восстановление:

  1. Разбираем аккумулятор устройства и измеряем напряжение полюсов каждой банки.
  2. Подключаем отрицательную клему к источнику питания – для этого можно использовать автомобильный аккумулятор или источник бесперебойного тока с напряжением 12В. Если вы восстанавливаете аккумулятор с напряжением более 9,6В, то нужно использовать цепь из 2 аккумуляторов.
  3. Другой кабель прикрепляем к положительному полюсу.
  4. На краткое время подключаем к положительному полюсу источник питания. Рекомендуется подключать на 4-5 секунд, чтобы кабель не приварился к источнику питания.
  5. Измеряем напряжение на полюсах банки, если оно не увеличилось, то проводим повторную подачу тока.
  6. Выполняем несколько циклов заряд-разряд для восстановления ёмкости аккумулятора.
  7. Недостаток такого метода – через несколько десятков циклов разрядки ёмкость аккумулятора снижается, так как во время подачи происходит саморазряд, но это не восстанавливает химический состав рабочей жидкости электролита.

Зарядное устройство для ni-cd своими руками

Комплектующие детали:

  • USB кабель или Конденсатор
  • Диоды
  • Радиатор
  • Термистор (сопротивление 10кОМ)
  • Резисторы
  • Транзистор
  • Трансформатор
  • Сдвоенный компаратор 1401СА3
  • Медная проволока 6мм.

Инструменты:

  • Шуруповёрт;
  • Настольная пила;
  • Вольтметр;
  • Лобзик;
  • Паяльник.

Инструкция по сборке:

Полученное зарядное устройство – мощность 470 мА.

Собрать зарядное устройство можно по указанной ниже схеме:

Важно установить транзистор на радиатор, чтобы избежать сильного нагрева.

Термистор нужно установить близко к аккумулятору, чтобы он реагировал на изменение температуры.

Дополнительные функции: автоматическое отключение при полной зарядке, контролирует температуру, что позволяет аккумулятору не перегреваться и служить дольше.

Ni-Cd или Li-ion, какие лучше. Сравнение батарей

Достоинства никелево-ионных аккумуляторов:

  • Низкая стоимость по сравнению с аналогами;
  • Быстрый заряд аккумулятора;
  • Большой срок эксплуатации;
  • Морозостойкость, работает при большом спектре температур;

Недостатки:

  • Наличие эффекта памяти – снижает работоспособность при неполном разряде;
  • Не сохраняет заряд при долгом хранении;
  • Требуется тренировка аккумулятора для восстановления характеристик после длительного хранения;
  • Высокий уровень саморазряда.

Также существуют литий-ионные аккумуляторы, которые являются более дорогим аналогом. Лучше всего применяются в устройствах с постоянным напряжением.

Достоинства:

  • Отсутствие «эффекта памяти» – можно заряжать по мере необходимости, не дожидаясь полной разрядки;
  • Высокая ёмкость;
  • Лёгкость;
  • Относительно низкий уровень саморазряда – около 5% в месяц;
  • Быстрая зарядка.

Недостатки:

  • Высокая стоимость по сравнению с аналогами;
  • Использование на морозе сокращает срок эксплуатации;
  • Сравнительно небольшой срок службы: 200-300 циклов заряд-разряд.

Выбор типа аккумулятора зависит от назначения: если вы планируете использовать устройство на морозе – лучше подойдет никелево-кадмиевый, а для домашнего использования при небольших нагрузках тока – литий-ионные батареи.

Никелево-кадмиевые аккумуляторы, несмотря на наличие современных аналогов, не теряют своей популярности из-за небольшой цены. При соблюдении правил по эксплуатации, они будут служить вам долго. Теперь вы знаете, как можно самостоятельно восстановить аккумулятор, правильно его использовать и даже собрать зарядное устройство к нему своими руками.

Отличия аккумуляторов NiCd и NiMH, NiZn, NiFe и NiH

Категория: Поддержка по аккумуляторным батареям
Опубликовано 23.03.2016 01:31
Автор: Abramova Olesya


В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания. Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.

Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв — в качестве электрода стал использоваться пористый материал с активным веществом внутри. Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.

На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента. В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи. Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки — повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.

NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда. При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня. (Смотрите: Как восстановить никелевый аккумулятор). В таблице 1 перечислены преимущества и недостатки стандартного никель-кадмиевого аккумулятора.

Преимущества Надежный; большое количество циклов при правильном обслуживании
Единственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессом
Хорошие нагрузочные характеристики, прощает их преувеличение
Длительный срок хранения; возможность хранения в разряженном состоянии
Отсутствие специальных требований к хранению и транспортировке
Хорошая производительность при низких температурах
Самая низкая стоимость одного цикла работы среди всех аккумуляторов
Доступен в широком диапазоне размеров и вариантов исполнения
Недостатки Относительно низкая удельная энергоемкость в сравнении с более новыми системами
Эффект “памяти”; необходимость периодического обслуживания для его избежания
Кадмий является токсичным материалом, необходима специальная утилизация
Высокий саморазряд; нуждается в подзарядке после хранения
Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения

Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.

2. Никель-металл-гидридные аккумуляторы (NiMH)

Исследования никель-металл-гидридной технологии начались еще в 1967 году. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.

Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости. Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.

3. Использование в потребительском сегменте

NiMH батареи в данный момент являются одними из самых легкодоступных. Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.

В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям, которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.

В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы. Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.

Тип батареи Емкость АА версии Напряжение Количество остаточной энергии вследствие саморазряда после 1 года Примерное количество возможных снимков цифровой камерой
NiMH 2700 мАч, перезаряжаемая 1,2В 50% 600 снимков
Eneloop* 2400 мАч, перезаряжаемая 1,2В 85% 500 снимков
Обычная щелочная 2800 мАч, неперезаряжаемая 1,5В 95% 10-летний срок хранения 100 снимков
Перезаряжаемая щелочная 2000 мАч, уменьшается при последующих зарядках 1,4В 95% 100 снимков
Литиевая (Li-FeS2) 2500-3400 мАч, неперезаряжаемая 1,5В Крайне низкий саморазряд, 10-летний срок хранения 690 снимков

Таблица 2: Сравнение различных батарей типоразмера АА.

* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.

Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель. Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения. Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.

В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.

В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.

Преимущества На 30-40 процентов большая емкость по сравнению с NiCd
Менее склонны к эффекту “памяти”, могут быть восстановлены
Простые требования к хранению и транспортировке; отсутствие регулирования этих процессов
Экологически чистые; содержат только умеренно токсичные материалы
Содержание никеля делает утилизацию самоокупающейся
Широкий диапазон рабочих температур
Недостатки Ограниченный срок службы; глубокие разряды способствуют ее уменьшению
Сложный алгоритм зарядки; чувствительны к перезаряду
Особые требования к режиму подзарядки
Выделяют тепло во время быстрой зарядки и разряда мощной нагрузкой
Высокий саморазряд
Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных — 99%)

Таблица 3: Преимущества и недостатки NiMH батарей.

4. Железо-никелевые аккумуляторы (NiFe)

После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.

В 1901 году Томас Эдисон продолжил развитие этой электрохимической системы в качестве замены свинцово-кислотному аккумулятору для электрических транспортных средств. Эдисон был уверен, что NiFe намного превосходит свинцово-кислотную систему и рассчитывал на большой успех на зарождавшемся рынке электротранспорта. Но в итоге автомобили с двигателем внутреннего сгорания полностью заняли рынок, а железо-никелевая батарея не заинтересовала производителей даже в роли стартерного аккумулятора или как источник электричества для осветительных приборов. (Смотрите: История электрических силовых агрегатов).

Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода — железо, а электролита — водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет. Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков. Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.

NiFe имеет низкую удельную мощность — примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц). Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.

Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях. Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах. Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.

NiFe аккумуляторы, равно как и NiCd и NiMH, требуют особых правил зарядки — кривая напряжения имеет синусоидальную форму. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить. Как и все батареи на основе никеля, NiFe боятся перезаряда — он вызывает разложение воды в электролите и приводит к ее потере.

Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора). Данную процедуру необходимо проводить до трех раз с длительностью пери

Какие батарейки лучше — алкалиновые или литиевые?

В этой статье будут рассмотрены особенности алкалиновых и литиевых батареек, а также их преимущества и недостатки. Для педантов сразу отмечу, что под обозначением «батарейки» здесь понимаются первичные источники тока щелочного (alkaline) и литиевого типа. В основном они представлены в продаже цилиндрическими моделями форм-фактора AA (или R6) и AAA (или R3), но на самом деле типоразмеров значительно больше. Можно также назвать C (R14), D (R20). Есть не только цилиндрические, но также дисковые (CR) или призматические («Крона» 9 В). Отличия у них не в форме и размерах, а в типе электрохимической системы, которая и определяет их достоинства и недостатки.

 

Содержание статьи

Алкалиновые

Конструкция и состав

Это стандартные батарейки щелочного типа. Алкалиновыми их окрестили за маркировку «Alkaline» (в переводе щелочной) импортного происхождения. Это марганцево─цинковый гальванический элемент питания со щелочным электролитом. В большинстве случаев щелочные батарейки имеют катод из двуокиси марганца (MnO2) с графитосодержащим материалом, а анод из цинковой пасты (Zn). Реже в качестве материала катода применяются оксид серебра (Ag2O) или метагидроксид никеля (NiO(OH)). В качестве электролита применяется гидроксид калия (KOH).

Ниже можно посмотреть конструкцию щелочного источника питания цилиндрического типа.



Во внутренней части цилиндрического элемента находится цинковый порошок, который пропитан щелочным электролитом (анодная масса). Для снятия отрицательного потенциала по центру имеется латунный стержень, который контактирует со стальной тарелкой в нижней части. Ближе к внешней части находится активная масса, представляющая собой смесь диоксида марганца и графита (сажи). От неё положительный потенциал идёт на стальной никелированный стакан. Катод и анод разделяет сепаратор, пропитанный электролитом.

Изоляцию катода обеспечивает оболочка, предотвращающая короткое замыкание. В нижней части можно также увидеть специальную прокладку. Её роль заключается в принятие газов, образующихся в элементе при работе. Если давление превышает допустимый предел, то развивается предохранительная мембрана и батарейка разгерметизируется. В результате из алкалинового источника питания может вытечь электролит.

Вернуться к содержанию
 

Реакции

В алкалиновых источниках питания протекают следующие реакции.

На аноде идет реакция с образованием гидроксида цинка и дальнейшим его разложением на оксид цинка и воду.

Zn + 2OH => Zn(OH)2 + 2e

Zn(OH)2 → ZnO + H2O

На катоде восстанавливается оксида марганца.

2MnO2 + H2O + 2e → Mn2O3 + 2OH

Общий электрохимический процесс в алкалиновой батарейке выглядит следующим образом.

Zn + 2KOH + 2MnO2 + 2e → 2e + ZnO + 2KOH + Mn2O3

Конструкция и материалы щелочной батарейки очень близки к солевым источникам питания. Однако в отличие от солевых батареек, в алкалиновых цинк содержится в порошкообразном виде, а не в форме цинкового стакана.



Срок хранения алкалиновых батареек обычно составляет от 3 до 5 лет. Для увеличения этого срока в современные модели производители добавляют ингибиторы коррозии органического происхождения. Существуют малораспространённые алкалиновые элементы с возможностью перезарядки. Они носят название RAM (Rechargeable Alkaline Manganese), что переводится, как перезаряжаемые щелочные марганцевые. Но это не аккумуляторы и количество зарядок у них не более 25.
Вернуться к содержанию
 

Сферы применения

Ниже перечислены основные сферы применения.

  • Фонари.
  • Мелкая электроника.
  • Переносные магнитофоны.
  • Вспышки для фотоаппаратов.
  • Радиоуправляемые модели.
  • Электронные часы.

Как видите, это устройства, потребляющие относительно высокий ток непродолжительное время, а также те, что требуют небольшое по мощности питание в течение длительного времени. Если подать слишком высокую нагрузку, то может просесть напряжение и потребуется некоторое время на его восстановление.
Вернуться к содержанию
 

Основные параметры

ПараметрЗначение
ЭДС элемента, В1.5
Интервал рабочих температур, Сот -30 до +55
Удельная мощность, кВт/куб. м.от 100 до 150
Удельная энергия, Вт*ч/кгот 65 до 90


Вернуться к содержанию
 

Литиевые

Конструкция

В случае с литиевыми батарейками есть несколько распространённых типов конструкции. Ниже рассмотрены цилиндрические и дисковые источники тока.

Для цилиндрических моделей применяются бобинная и рулонная конструкция.

Бобинная конструкция

По центру бобинной конструкции электрод, загерметизированный с помощью металлостеклянного спая. Второй электрод противоположной полярности сделан в виде цилиндра, а между ними находится сепаратор.

Рулонная конструкция



Рулонная конструкция состоит из лент анода и катода, а также сепаратора между ними. Всё это скручено в рулон и помещено в цилиндрический корпус. В этом случае достигается довольно большая площадь электродов. Благодаря этому увеличивается ток разряда. Кроме того, возрастает саморазряд.

В случае рулонных батареек важно позаботиться о безопасности, поскольку при коротком замыкании (КЗ) ток в них может достигать 20 ампер. Если произойдет КЗ, то из-за сильного разогрева элемент питания может взорваться. Чтобы это предотвратить, конструкции предусматривается плавкий термистор, который еще называют плавким предохранителем. Когда ток превышает определенное значение, термистор разогревается, увеличивается сопротивление материала и ток КЗ снижается.

После устранения короткого замыкания и уменьшения температуры, сопротивление плавкого предохранителя снижается и батарейку можно снова использовать.

Некоторые производители предусматривают дополнительный вид защиты в виде специальной насечки в основании отрицательного вывода элемента. Если давление внутри корпуса превысит определенное значение, то по этой насечке произойдет вскрытие и сброс давления. Так удастся избежать взрыва. После вскрытия литиевая батарейка уже непригодна для использования.

Дисковая конструкция



Дисковые батарейки, как модели бобинной конструкции, обладают меньшей площадью электродов, чем в случае рулона. Однако в них больше взаимодействующих материалов. Благодаря этому они имеют большую доступную ёмкость. Но ток разряда они выдают меньший. Поэтому таблетки и цилиндрические батарейки бобинной конструкции подходят для использования в устройствах с небольшим и средним потреблением тока, которые работают длительное время в автономном режиме. Литиевые элементы питания устанавливаются в тех устройствах, которые недолго работают в автономном режиме, но потребляют высокий ток.
Вернуться к содержанию
 

Состав и протекающие реакции

Существуют две электрохимические системы, на основе которых создаются литиевые батарейки.

  • Литий─диоксидмарганцевые или CR (Li─MnO2).
  • Литий─тионилхлоридные или ER (Li─SOCl2).

Вне зависимости от электрохимической системы элемент питания может быть выполнен в вышеперечисленных форм-факторах.
 

Литий─тионилхлоридные

В этой электрохимической системе катодом является жидкое вещество. В роли анода выступает металлический литий, а катод выполнен из пористой углеродной массы. Электролит представляет собой раствор солей лития (LiGaCl4 или LiAlCl4) в тионилхлориде (SOCl2). Тионилхлорид, помимо функции электролита, выполняет также роль активного материала катода. Химическая реакция, протекающая в этой электрохимической системе, выглядит так.

4Li + 2SOCl2 => 4LiCl↓ + S + SO2

В процессе разряда происходит оседание хлорида лития в порах катода. Когда батарейка близка к полному разряду, начинается оседание серы на катоде. Параллельно происходит растворение оксида серы в электролите.



Вернуться к содержанию
 
Литий─диоксидмарганцевые

Электрохимические системы на базе MnO2 являются более распространенными при создании первичных источников тока литиевой типа. Здесь роль анода также выполняет металлический литий,   активным катодным материалом является термообработанный диоксид марганца ─ MnO2. В системе используются органический электролит, имеющий в своём составе растворенные соли лития LiClO4 или LiCF2SO2. Часто используется диметоксиэтан или пропиленкарбонат. Реакция, происходящая при разряде в этой системе, показана ниже.

xLi + MnIVO2 => LixMnIIIO2

При протекании реакции нет образования каких-то химических элементов, которые бы увеличивали давление в корпусе источника тока. Марганец восстанавливается до трёхвалентного состояния, а также происходит встраивание ионов лития в кристаллическую решётку MnO2.

Система на основе Li─SOCL2 имеет более высокую энергетическую плотность и ёмкость, чем Li─MnO2. Естественно, при одинаковых габаритах и массе. Это обусловлено более высокой активностью тионилхлорида сравнению с диоксидом марганца. Кроме того, номинальное напряжение в первом случае составляет 3,5, а во втором 3 вольта.



Стоит сказать пару слов о таком эффекте, как пассивация у систем Li─SOCl2. Это процесс образования диэлектрической пленки хлорида лития на катоде. Он имеет две стороны медали.

Если после хранения такой батарейки подключить её к устройству, потребляющему большой ток, то произойдет кратковременная просадка напряжения. Впоследствии она выравнивается до нормального значения. Просадка будет тем сильнее, чем дольше на хранении находился источник питания. И тем больший ток будет потребляться нагрузкой. Если же напряжение снизится ниже минимального, то устройство не может просто включиться.

Поэтому после хранения батареек Li─SOCl2 перед подключением к ним нагрузки нужно проводить депассивацию. Причём специалисты советуют учитывать эффект пассивации на стадии проектирования того или иного устройства для его стабильного функционирования. С этой точки зрения процесс пассивации является отрицательным явлением.

В принципе, этот эффект можно преодолеть, если ввести в электролит вещества, способствующие растворению хлорида лития. Но образующаяся пленка имеет и положительный эффект. Он заключается в том, что при хранении предотвращается окисление материала катода. Благодаря этому снижается интенсивность саморазряда. К примеру, у батареек Li─SOCl2,имеющих бобинную конструкцию, составляет всего около 1 процента в год.
Вернуться к содержанию
 

Сферы применения

  • Цифровые фотоаппараты и камеры.
  • Автомобильные пульты дистанционного управления.
  • Часы.
  • Калькуляторы.
  • Материнские платы.
  • Прочая электроника малого и среднего размера.

Вернуться к содержанию
 

Безопасность

При использовании литиевых батареек важное значение приобретает вопрос безопасности. Это касается их применения как в промышленных, так и в бытовых устройствах. Нужно позаботиться о том, чтобы параметры эксплуатации не привели к возгоранию, порче оборудования и травмам персонала. Более безопасными считаются источники тока Li─MnO2. В них при хранение и разряде не возникает никаких элементов, увеличивающих давление в корпусе. В электрохимических системах Li─SOCl2 присутствуют подобные элементы, но критического увеличения давления они не вызывают.


Стоит также понимать, что чем больше ёмкость литиевых источников тока (а значит, больше их размеры и масса), тем больше в них активного материала. А значит, серьёзнее будут последствия в случае возгорания. Чем меньше лития использовано в батарейке, тем она безопаснее. Про средства защиты (клапаны, насечки) уже было сказано выше в разделе про рулонную конструкцию.

Вернуться к содержанию
 

Характеристики

 Li─MnO2Li─SOCl2
Катоддиоксид марганцатионилхлорид
Электролитперхлорат лития в растворителе (пропиленкарбонат, диметоксиэтан)тетрахлоралюминат лития в тионилхлориде
ЭДС, В3.33.65
Номинальное напряжение, В33.5
Удельная энергия, Вт*ч/кг280500-700


Вернуться к содержанию
 

Что лучше – литиевые или алкалиновые?

В итоге, что лучше литиевые или щелочные батарейки? Как и в других подобных случаях, однозначного ответа на вопрос здесь дать нельзя. Выбор нужно делать в зависимости от устройства, где будет работать батарейка. Можно только обозначить преимущества и недостатки обоих типов.

Алкалиновые

Преимущества

  • Длительный срок хранения и низкий саморазряд.
  • Незначительное падение напряжения по мере разряда.
  • Большая ёмкость по сравнению с солевыми источниками тока.
  • Показывает хорошую работу при отрицательных температурах.
  • Выдерживает значительный ток разряда без просадки напряжения.
  • Отсутствие расхода электролита.
  • Небольшое газовыделение.

Недостатки

  • Низкая энергоёмкость. Отсюда больше размеры и масса.
  • Относительно невысокая цена.

 

Литиевые

Преимущества

  • Высокая энергоёмкость. Это значит, что при одинаковых габаритах с алкалиновыми батарейками они имеют большую ёмкость.
  • Литиевые источники питания имеют большее напряжение и более высокий разрядный ток.
  • Отсутствие газовыделения при разряде или объём выделяющихся газов небольшой.
  • Хорошо держат напряжение при высоких нагрузках.

Недостатки

  • Содержат в своем составе более токсичные материалы, чем у алкалиновых элементов.
  • Требует более аккуратного обращения при эксплуатации. Существует опасность возгорания при коротком замыкании.
  • Срок службы дольше, чем у алкалиновых, но и стоят дороже.

Можно однозначно сказать, что выбор в пользу литиевых батареек следует делать тогда, когда требуется обеспечить питание устройств с высоким потреблением тока. Но при этом придется потратиться больше, чем случае со щелочными источниками тока.
Вернуться к содержанию
 

Опрос

Примите участие в опросе!

 Загрузка …
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Исправления и дополнения к материалу, а также ваше мнение по поводу различных типов батареек, оставляйте в комментариях ниже. Голосуйте в опросе и оценивайте статью.
Вернуться к содержанию

Перезаряжаемые батареи лучше?

Хотя одна компания утверждает, что их батареи продолжают работать, работать и работать … правда в том, что ваши батареи со временем разрядятся. После включения наших пультов дистанционного управления, магнитофонов и электробритв среднестатистический человек выбрасывает в этом году в среднем восемь батареек. Но, переключившись на аккумуляторные батареи, вы сэкономите деньги и воспользуетесь преимуществами «возобновляемой энергии».

Экономьте деньги с течением времени

Хотя может показаться дешевле купить стандартный набор щелочных батарей (AA, AAA, C, D или 9 вольт), переход на аккумуляторные батареи может со временем сократить ваши расходы.Несмотря на начальную цену в 40 долларов (за стандартное зарядное устройство и аккумуляторы), аккумуляторные батареи могут работать до 1000 зарядов (дольше, если хранить в холодильнике), что в среднем экономит около 80 долларов в год.

Лучше для окружающей среды

При вывозе на свалки большинство батарей (даже аккумуляторных) могут выделять в окружающую среду вредные металлы, такие как ртуть, свинец и кадмий. Хорошая новость заключается в том, что аккумуляторные батареи на удивление легко утилизировать. А поскольку аккумуляторы можно перезаряжать и повторно использовать многократно, они сокращают количество отходов на свалках.

Знай свои варианты

Есть три основных типа аккумуляторных батарей. Никель-кадмиевый аккумулятор (NiCd) известен своим долгим сроком службы, но более низким потенциалом напряжения, чем у его конкурентов. Другой тип, никель-металлгидрид (NiMH), имеет более высокое напряжение, чем NiCd, но требует большего количества зарядов.


На шаг выше остальных, литий-ионная батарея дороже, чем другие аккумуляторные батареи, но накапливает больше энергии и дольше работает без подзарядки.Они идеально подходят для инструментов с батарейным питанием и лучше для окружающей среды, поскольку не содержат вредных токсинов. А поскольку литий — это природный металл, он доступен в больших количествах.

Как перерабатывать батареи

После многочисленных зарядок даже аккумуляторные батареи со временем разряжаются. Переработка может предотвратить попадание токсинов в окружающую среду, поэтому это лучший выбор, чем выбрасывать их в мусор. Чтобы найти ближайший к вам участок по переработке бытовых аккумуляторов, посетите веб-сайт корпорации по переработке аккумуляторных батарей или позвоните по телефону 877-273-2925.Если по какой-то причине в вашем районе нет места для переработки других ваших аккумуляторных батарей, например старых батарей для сотовых телефонов, Earthworks может отправить их вам. Все услуги бесплатны.

История литий-ионной батареи

В конце 1970-х группа ученых со всего мира начала разработку того, что впоследствии стало литий-ионным аккумулятором, типом перезаряжаемой батареи, которая в конечном итоге будет питать все, от портативной электроники до электромобилей и т. Д. мобильные телефоны.

На этой неделе Нобелевская премия по химии 2019 года была присуждена трем ученым, Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино, за их работу по разработке этой батареи.

Согласно официальной организации, присуждающей Нобелевскую премию, «этот легкий, перезаряжаемый и мощный аккумулятор сейчас используется во всем, от мобильных телефонов до ноутбуков и электромобилей. Он также может накапливать значительные количества энергии от солнечной и ветровой энергии, что делает возможным общество, свободное от ископаемого топлива.”

История литий-ионной батареи

Во время нефтяного кризиса 1970-х годов Стэнли Уиттингем, английский химик, работавший в то время в Exxon Mobile, начал изучать идею новой батареи — батареи, которая могла бы перезаряжаться сама по себе за короткий промежуток времени и, возможно, приводила к образованию ископаемых -бесплатная энергия на один день.

Батарея Уиттингема. © Йохан Ярнестад / Шведская королевская академия наук

В своей первой попытке он попытался использовать дисульфид титана и металлический литий в качестве электродов, но это сочетание создало несколько проблем, включая серьезные проблемы безопасности.После короткого замыкания аккумуляторов и возгорания Exxon решила прекратить эксперимент.

Однако Джон Б. Гуденаф, в настоящее время профессор инженерии Техасского университета в Остине, высказал другую идею. В 1980-х он экспериментировал с использованием оксида лития-кобальта в качестве катода вместо дисульфида титана, что окупилось: батарея удвоила свой энергетический потенциал.

Батарея Гуденафа. © Йохан Ярнестад / Шведская королевская академия наук

Пять лет спустя Акира Ёсино из Университета Мейджо в Нагое, Япония, совершил еще один обмен.Вместо использования химически активного металлического лития в качестве анода он попытался использовать углеродсодержащий материал, нефтяной кокс, что привело к революционным открытиям: новая батарея не только была значительно безопаснее без металлического лития, но и ее рабочие характеристики были более стабильными, что привело к созданию первого прототипа. литий-ионного аккумулятора.

Батарея Йошино. © Йохан Ярнестад / Шведская королевская академия наук

Вместе эти три открытия привели к созданию литий-ионной батареи, какой мы ее знаем.

Создание лучшей батареи с помощью электронной микроскопии и спектроскопии

Хотя рынок литий-ионных аккумуляторов продолжает расти двузначными числами, проблема заключается в разработке более безопасных, долговечных и более энергоемких аккумуляторов. Чтобы помочь в этом исследовании, многие ученые обращаются к различным аналитическим методам для изучения компонентов батарей на разных этапах их жизненного цикла.

Используя методы визуализации, такие как микроКТ и электронная микроскопия, ученые могут создавать 2D и 3D изображения, позволяя им видеть батарею в полном масштабе, от клеточного до атомного уровня.Отсюда они могут развить фундаментальное понимание материалов батареи на основе микроструктурной информации, извлеченной из изображений.

Чтобы изучить эволюцию структурных и композиционных изменений материалов, а также образования дефектов, ученые обращаются к спектроскопии, такой как комбинационное рассеивание света, ЯМР, дифракция рентгеновских лучей и масс-спектрометрия. Используя эти методы, исследователи могут анализировать материалы электродов по мере их зарядки и давать информацию, которую они иначе не увидели бы.

Продолжение поисков долговечных батарей с более высокой плотностью энергии

Университеты и компании по всему миру продолжают изучать способы создания более безопасных, более мощных, долговечных и надежных аккумуляторов даже в суровых погодных условиях.

Исследователи из Калифорнийского университета в Сан-Диего, например, пытаются улучшить удельную энергию литий-ионной батареи, добавляя кремний в анод. Они также разрабатывают батарею, которая может работать при температурах до -76 ° F, по сравнению с текущим пределом -4 ° F для литий-ионных батарей.

Литий-ионные батареи

произвели революцию в современной жизни. Как сказал Уиттингем на недавней конференции: «Литиевые батареи повлияли на жизнь почти каждого человека в мире.«Он все еще работает над исследованиями аккумуляторов, и мы очень рады видеть, как Нобелевская премия помогает отрасли двигаться вперед.

Поздравляем всех троих победителей!

Продолжайте читать

  1. Развитие технологии литий-ионных аккумуляторов с 3D-изображениями
  2. Создание лучшей батареи с помощью MicroCT
  3. Калифорнийский университет в Сан-Диего работает над созданием батарей будущего
  4. Анализ батареи / накопителя энергии

Ресурсы

  1. «Накопление электрической энергии и химия интеркаляции» | Наука
  2. Нобелевская премия по химии присуждена за литий-ионные аккумуляторные батареи | Вашингтон пост
  3. История развития аккумуляторов | Phys.org
  4. Пресс-релиз: Нобелевская премия по химии 2019 г. | Организация Нобелевской премии

Чтобы узнать больше о том, как электронная микроскопия используется для разработки новых батарей, щелкните здесь, чтобы поговорить с экспертом.

Чжао Лю (Zhao Liu) — менеджер по развитию бизнеса в области электронной микроскопии в Thermo Fisher Scientific.

Поделиться статьей

Литий-ионные батареи «ЗЕЛЕЕ», чем свинцово-кислотные?

Есть много разных способов считать продукт более экологически чистым или нет, чем другой.Литий-ионные аккумуляторы не содержат опасных материалов, в отличие от свинцово-кислотных аккумуляторов (например, свинца). Оба типа батарей пригодны для вторичной переработки; однако в настоящее время в большинстве регионов мира переработать свинцово-кислотные батареи намного проще, чем литий-ионные батареи большего формата, используемые в ИБП и электромобилях. Однако для получения полной картины воздействия на окружающую среду необходимо учитывать весь углеродный след в течение жизненного цикла батареи. Использование углерода накапливается на протяжении всего жизненного цикла продукта:

  • Добыча сырья
  • Энергия для производства и транспортировки
  • Энергия для поддержания заряда и охлаждения батарей
  • Возможность вторичной переработки и воздействие на землю, когда пора утилизировать

Предыдущий анализ показал, что операционные убытки (т.е.е. энергия, используемая для поддержания заряда аккумуляторов), безусловно, является основным фактором, определяющим углеродный след ИБП и его аккумуляторной системы в течение 10-летнего жизненного цикла. Однако между двумя системами нет большой разницы в эксплуатационных потерях. Какой из них стоит за другим, зависит от фактического варианта использования.

Литий-ионные батареи

требуют меньше энергии для поддержания заряда, чем свинцово-кислотные. Эффективность цикла зарядки для литий-ионной батареи составляет 90% по сравнению с 80-85% для свинцово-кислотной батареи.Кроме того, свинцово-кислотные аккумуляторы саморазряжаются с большей скоростью, чем литий-ионные. Однако это повышение эффективности компенсируется необходимостью для литий-ионных аккумуляторов иметь систему управления батареями (BMS) для защиты от коротких замыканий и перезарядки. Эта система мониторинга потребляет энергию. Таким образом, общие операционные убытки между ними очень похожи.

Поскольку доминирующим фактором для определения 10-15-летнего углеродного следа является, в основном, мытье воды, необходимо обратить внимание на другие факторы.Учитывая, что литий-ионные аккумуляторы, содержащие материалы, безопасные для захоронения, подлежат вторичной переработке, и поскольку их срок службы в 2-3 раза больше, чем у свинцово-кислотных аккумуляторов, можно утверждать, что литий-ионные аккумуляторы «экологичнее».

Тем не менее, обратите внимание, что уровень утилизации свинца из свинцово-кислотных аккумуляторов составляет 99%, при этом более 90% аккумуляторов собираются (в Северной Америке… аналогичные показатели наблюдаются в Европе и Японии). Однако состояние переработки литий-ионных аккумуляторов, особенно аккумуляторов большего формата (например, используемых в электромобилях и ИБП в центрах обработки данных), гораздо менее развито.Прочтите технический документ, который я написал в соавторстве с Мартином Зачо, на тему «Часто задаваемые вопросы по использованию литий-ионных батарей с ИБП».

.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.