Плотность дизельного топлива и бензина: Какова плотность дизельного топлива, как ее рассчитать и на что она влияет


0
Categories : Разное

Содержание

чему равна и как определить самостоятельно

Бензин – продукт, полученный путем перегонки нефти, взрывоопасная смесь углеводородов, которую используют в качестве топлива для автомобилей. Примерно 25% от всей нефти, добываемой в мире, перерабатывают в бензин. Ключевым параметром топлива выступает октановое число – стойкость к детонации. Это не показатель качества продукта, а требования, которым он должен соответствовать с целью последующей совместимости с определенным типом ДВС. Еще одна важная характеристика – плотность бензина, отображающая его эксплуатационные свойства.

Чем измеряется плотность бензина

Входящие в состав присадки определяют температуру кипения и замерзания. Из курса физики мы помним, что плотность есть не что иное, как отношение массы к объему, и исчисляется величина в килограммах на кубический метр. Обычно из-за разбега заявленных и итоговых показателей и возникают основные разногласия между производителем и оптовым потребителем.

Важно понимать, что плотность топлива не отображает качество. Все измерения должны проходить в одинаковых условиях, то есть, при одной и той же температуре окружающей среды.

Средние значения:

Во время покупки топлива каждый водитель вправе поинтересоваться, согласно какому стандарту происходил замер этого параметра. Ныне действующий ГОСТ определяет температуру в 15 градусов по Цельсию, когда прежний стандарт допускал 20 градусов. Произвести её замер можно даже в гаражных условиях. Достаточно заполнить емкость бензином, взвесить и полученный результат разделить на литры – конечная цифра и есть плотность.

Процедура выглядит примерно так:

  • берем любую градуированную емкость, которую можно взвесить;
  • взвешиваем её и записываем результат;
  • заполняем емкость 100 мл топлива;
  • вновь взвешиваем, после из второго результата вычитаем первый;
  • полученную цифру делим на объем находящегося в емкости топлива.

Простой и быстрый метод – использовать специальное приспособление. Одним из таковых приборов считается ареометр – устройство, которое с целью замера реализует принцип Архимеда. К тому же ареометр позволяет определить концентрацию и количество примесей. Он состоит из стеклянного цилиндра: с одной стороны трубка с округлым дном, с другой небольшого диаметра трубка с маркировкой. По показаниям шкалы и количеству вытеснившему количеству жидкости легко определить искомый параметр.

Государственные стандарты, применяемые к бензину

Нередко автовладельцы интересуются: в каких пределах должна находиться плотность бензинов? Как правило, в используемом автомобильной промышленностью топливе её величина составляет от 700 до 780 килограмм на метр в кубе. Характеристики, свойства топлива зависят и от состава, и от плотности нефти, из которой был произведен продукт. Например, ароматические соединения обладают меньшей плотностью, чем алифатические. Параметр будет колебаться как в большую, так и меньшую сторону в зависимости от процента входящих в состав соединений.

Ввиду того, что плотность топлива величина непостоянная, специалистами были созданы таблицы, по которым легко узнать допустимый уровень плотности топлива в зависимости от условий хранения.

Сфера нефтепромышленности также регулируется государственными стандартами экологичности. В России с начала 2015 года действует ГОСТ 32513-2013, который устанавливает стандарт качества современных бензинов с октавным числом не менее 80 (АИ-80). Однако вопрос охраны окружающей среды и экологичности транспорта с каждым годом обретает новую актуальность. Следовательно, на государственном уровне к продуктам нефтепереработки выдвигают все более жесткие требования. В 2016 году в РФ приняли ЕВРО-5 – стандарт, который регулирует процент содержания в бензине тяжелых металлов и бензола.

Плотность бензина АИ-92

Октановое число бензина АИ-92 не может быть ниже 91. Топливо используется преимущественно в силовых агрегатах легкового автомобильного транспорта. На вид должно быть прозрачным и чистым. Ему свойственна стойкость к детонации, поэтому автолюбители и сегодня приобретают «92-й» бензин для ДВС отечественных и многих импортных марок авто. Искомый параметр при замере в +15 градусов равняется 725-780 км/м3.

Плотность бензина АИ-95

Этот бензин для привезенных из-за рубежа автомобилей. Отличается высокими эксплуатационными свойствами: в ходе его производства изготовители задействуют технологические компоненты. Октановое число не должно быть ниже 95. Значение замеряют при +15 по Цельсию. Стандартная плотность равна 750+/-5 кг/м3.

Плотность бензина АИ-100

Одно из последних нововведений – автомобильное топливо с октановым числом 100. Встречается на многих автозаправочных станциях, в частности на АЗС Лукойл. Это продукт с дополнительными Экто присадками. Ему характерны высокие эксплуатационные свойства и не менее высокая цена. Нормативный показатель плотности установлен в пределах от 725 до 750 кг/м3 при стандартных +15 градусах.

Для чего измерять плотность бензина

За счет определения числа массы топлива в единице объема легко определить марку топлива и объемный вес.

Последнее значение расчетное, зависит от комбинации показателей веса и объема. Кроме того, сложно предположить, что одна из заправочных станций примет топливо без замера при сдаче-приемке бензина.

Как рассчитать плотность нефтепродуктов

Когда нет специального приспособления, тогда следует производить расчеты исходя из информации в паспорте продукта и показателей в таблице средних температурных поправок. Чтобы получить необходимые данные, достаточно выполнить следующие элементарные вычисления:

  1. В документации находим его показатель плотности при +20 по Цельсию.
  2. Производим замеры температуры продукта.
  3. Высчитываем разницу между полученным результатом и +20 по Цельсию.
  4. Округляем полученное значение до целого числа.
  5. В таблице находим поправку на отклонения в соответствии с паспортным значением при +20 по Цельсию.
  6. Высчитываем произведение поправки на разницу температур.
  7. Итог слаживаем с паспортным значением плотности при +20 или отнимаем, если температура выше.

Ничего сложного нет. Все математические операции – школьная программа, прибегать к лабораторным исследованиям не нужно.

Цетановый индекс у дизельного топлива и что такое октановое число солярки.

Еще совсем недавно дизельные двигатели были только у грузового транспорта. Теперь же это широко распространенный вариант и среди легковых автомобилей. Уже не вызывает удивления, что владельцы подобных машин все чаще стали интересоваться, какое цетановое число у дизельного топлива и что такое цетановый индекс.

Цетановый индекс дизельного топлива

Цетановым индексом (ЦИ) дизтоплива называют показатель цетанового числа (ЦЧ), который рассчитывается по плотности и среднему значению температуры выкипания фракции (пятидесятипроцентной).

Точность расчетов находится в прямой зависимости от того, насколько верно определены показатели плотности и температуры кипения. Причем первое значение нужно смотреть по госстандарту 3900-85, а второе — по ГОСТ 2177-82.

Если цетановые числа находятся в области 30-60 единиц, то для дистиллятных дизтоплив расчетный ЦИ будет равен количеству ЦЧ, выведенному на аппаратуре экспериментальным путем. Возможна погрешность в 2 единицы, но такой результат возможен с вероятностью в 75%.

Определить цетановый индекс дизельного топлива можно, руководствуясь следующим примером:

  1. Среднее значение температуры кипения половинчатой фракции солярки при 93,3 кПа равно 287,8°С.
  2. При 15°С плотность будет равна 0,860 г/см³.
  3. Поправка температуры закипания на давление, равное 101,3 кПа, будет 0,5 * 8 = 4°С.
  4. Исправленный показатель закипания с учетом поправки на давление 101,3 кПа составит 287,8 + 4 = 291,8°С.
  5. ЦИ дистиллятных дизтоплив можно проверить по специальному чертежу. В данном случае значение будет равно 48,5. А результат, полученный путем вычислений, — 48,8.

Что такое цетановое число

Цетановым числом (ЦЧ) называется информация о промежутке времени, в течение которого задерживается возгорание топлива. Чем этот показатель выше, тем короче задержка от впрыска топливной смеси до ее воспламенения и тем ровнее будет гореть солярка.

Зачем знать цетановое число

Средний дизельный двигатель хорошо функционирует на солярке с ЦЧ 40-55 единиц. Более низкое значение приводит к тому, что возгорание задерживается, давление в камере сгорания увеличивается, а это значит, что мотор быстрее изнашивается.

Дизель стандартного типа располагает цетановым числом в рамках 40-45 единиц. Вариант высшего качества предполагает ЦЧ 45-50.

В условиях российского климата на эти цифры накладывается небольшое ограничение: сезонное дизельное топливо должно содержать в своем цетановом числе не меньше 45 единиц.

Премиальное дизтопливо оснащено большим количеством легковоспламеняющихся фракций и является более легким. Данные параметры делают его оптимальным вариантом для использования в зимний период. Благодаря повышенному отношению водорода к углероду оно образует меньше дыма при сгорании.

Если дизельное ЦЧ будет более 60, опытный водитель сразу же отметит несколько отрицательных моментов. Во-первых, снизится полнота сгорания. Во-вторых, расход топлива увеличится. Ну и в-третьих, чрезмерная задымленность выхлопных газов характеризует данный недостаток.

Как измерить цетановое число

При измерении показатель приравнивается к численному содержанию цетана (в процентах) вперемешку с альфа-метилнафталином. Воспламеняемость цетана будет равна 100%, а альфа-метилнафталина 0%.

Для испытания нужно замерить время самовозгорания смеси и соотнести это значение со временем топливного эквивалента. То есть, если проверяемое топливо загорится за такое же время, что и смесь цетана с альфа-метилнафталином (30%), то ЦЧ в этом случае будет равно 30.

Методика определения

ЦЧ дизтоплива определяют, сравнивая характеристики сгорания исследуемого топлива с аналогичными показателями эталов, значение цетана которых выведено. Исследования проходят при помощи американского двигателя CFR (Cooperative Fuel Research ) Engine (США) или ИДТ-90 (Россия) при рабочих условиях.

Сравнивают 2 эталона с цетановыми числами больше и меньше, чем у проверяемого образца. Степень сжатия меняют до тех пор, пока не получится определенный угол задержки воспламенения на маховике. Результат должен находиться между показаниями, взятыми у эталонных образцов. Затем ЦЧ вычисляется при помощи формулы методом линейной интерполяции. Данный метод использовался еще в середине прошлого века. Сегодня можно отметить множество его недостатков:

  1. Тяжесть установки.
  2. Необходимость отдельного помещения.
  3. Дизельный двигатель сложно обслуживать.
  4. Анализ занимает много времени.
  5. Эталонных смесей и топлива приходится расходовать много.

Все требовало поиска более результативного и удобного метода. И в начале нашего века исследователи придумали впрыскивать топливо в камеру сгорания постоянного объема и разработали для этих целей аппарат. Это настольный инструмент без двигающегося поршня, который еще называют анализатором.

Дизель вводится в нагретую камеру с измерением показателей температуры вспышки и давления. Прибор отмеряет, сколько времени прошло с момента впрыска до первого увеличения давления. Последний вызван выделением тепла при сгорании и называется задержкой воспламенения, которая взаимосвязана с ЦЧ, выявленным моторным методом.

Все существующие способы измерения описаны в соответствующих стандартах ASTM и EN.

Чем грозит использование неподходящего дизтоплива

Основная цель дизельного топлива, или солярки, — получить энергию от горения, а также смазать и охладить топливную систему.

При заправке на автозаправочной станции качество смеси определить сложно. Но если попадется недобросовестный поставщик, то низкая проба топлива сразу же негативо отразится на работе мотора.

Всего существует 3 типа горючего:

  • летнее;
  • зимнее;
  • арктическое.

Важно выбирать подходящее по времени года топливо, иначе двигатель может быстро сломаться.

Признаки некачественной смеси:

  1. Темный цвет и запах мазута.
  2. Вода либо песчинки на дне. Зимой солярка густая и с белыми хлопьями в составе — подделка.
  3. Водянистость может означать, что солярку разбавили бензином.

Низкопробная смесь приводит к образованию большего количества нагара, который оседает на стенках камеры сгорания. Если вовремя не обрабатывать двигатель, мощность его работы снизится.

Из-за добавок и присадок в дизельном топливе срок службы свечей зажигания уменьшается. А различные примеси в поддельной смеси портят кольца и поршни.

Повышение цетанового числа

В процессе производства

Чем ЦЧ больше, тем затратнее изготовление горючего. Поэтому некоторые производители, стремясь сэкономить, используют различные присадки. Благодаря такой технологии можно поднять значение ЦЧ на 2-7 пунктов.

Чаще всего для этой цели берут изопропил или циклогексилнитраты. Чрезмерное повышение показателя путем добавления присадок недопустимо. Оно приводит к тому, что другие характеристики дизтоплива снижаются.

Самостоятельное повышение

На АЗС нередко можно нарваться на поддельное либо неподходящее по цетановому числу топливо. Причем определить низкое качество сразу не представляется возможным. Суррогат не выдает себя ни цветом, ни запахом.

Если вдруг оказалось так, что в бак попала низкокачественная смесь, то можно попробовать повысить ЦЧ самостоятельно, добавив присадки. Но для этого цетан-корректор для дизельного топлива всегда должен быть под рукой.

Какие стандарты приняты в странах ЕС а какие в России

Требования к дизельным топливам по стандартам ЕС

Показатели Евро-3 Евро-4 Евро-5
ЦЧ не менее 51 не менее 51 54
Сера 350 50 10
Плотность при +15°С 820-845 820-845 820-830
Состав фрак. 95% в °С 360 360 340-350
Полициклическая ароматика в % об. 11 11 2

Стандарты РФ

Показатель ГОСТ 305 ГОСТ 52368
ЦЧ
Сера 2000-5000 350, 50, 10
Плотность при 15°С 45 51
Состав фрак. 95% в °С 360 360
Полисикличнская ароматика в % об. не нормируется 11

Из данных таблиц видно, что требования к качеству дизтоплива в Росии и странах Евросоюза несильно отличаются.

Что такое плотность топлива, на что она влияет? — Топливо оптом

Плотность топлива – это его удельный вес, а именно количество массы в единице объема.

Плотность топлива во многом зависит от плотности нефти из которой оно получено. Согласно ГОСТ Р 52368-2005 плотность топлива при температуре +15 °С должна быть в пределах 0,820-0,845 г/см3, а по ГОСТ 305-82 не должна превышать 0,860 (при 20°С)

Плотность топлива зависит от температуры, впрочем, как и для любой другой жидкости: при повышении температуры плотность топлива снижается и наоборот – при снижении температуры плотность топлива увеличивается. Существуют специальные таблицы для пересчета плотности топлива в зависимости от температуры. Для дизельного топлива температурная поправка изменения плотности составляет, в среднем 0,0007 г/см3 на 1°С.

Плотность топлива очень лукавая цифра, из за этой цифры возникают постоянные конфликты между поставщиком и грузополучателем. А причина заключается в том, что учет топлива на НПЗ и нефтебазах производится по массе – в тоннах, а учет отпуска топлива автотранспорту производится в литрах. Естественно, что количество литров в одной и той же массе может меняться в зависимости от температуры. Например, летом, при температуре +20°С, бензовоз слил в подземную емкость АЗС десять тонн дизельного топлива с фактической плотностью 0,840 г/см3.При этом объем топлива составил 11905 л. Через некоторое время температура топлива в подземной емкости снизилась до +4 °С. Из за снижения температуры плотность топлива увеличилась на величину 0,0007*16=0,0112 г/см3. При этом первоначальный объем (11105 литров) слитого в подземную емкость уменьшился до: 10000кг / (0,84+0,0112)= 11748 л. Разница в объеме составила: (11905-11748)=157 литров.

В практических расчетах усадки топлива рекомендуем воспользоваться более простым соотношением: «Один литр на одну тонну на один градус» — именно такое изменение объема происходит от изменения плотности топлива.

Рассчитать изменение плотности дизельного топлива при различных изменениях температуры можно на нашем сайте в разделе «Расчет плотности ДТ».

Плотность дизельного топлива

Дизельное топливо (солярка) является нефтепродуктом, который активно используется в виде основного горючего для дизельного двигателя внутреннего сгорания. Дизтопливо получают в результате перегонки нефти. К составу и качеству такого топлива выдвигается ряд требований согласно определенным стандартам.

Характеристика плотности дизтоплива является параметром, который определяет эффективную работоспособность данного вида горючего в различных температурных условиях. Плотность топлива представляет собой количество его массы в килограммах, которое  способно уместиться в одном кубометре.

Величина плотности солярки не постоянна, так как зависит от температуры. Повышение температуры горючего приводит к уменьшению его плотности. Для измерения плотности дизеля (удельный вес дизтоплива) используется специальный прибор, получивший название ареометр.

Рекомендуем также прочитать статью о правильном выборе присадок в дизельное топливо. Из этой статьи вы узнаете об основных критериях в процессе подбора антигеля в период зимней эксплуатации дизельного автомобиля.

Плотность измеряемой жидкости равна отношению массы ареометра к  тому объему, на который прибор погружен в жидкость. Ареометры бывают устройствами постоянного объёма/постоянной массы. Для различных жидкостей существуют соответствующие ареометры. Чтобы измерить плотность солярки, потребуется ареометр для нефтепродуктов типа АН, АНТ-1 или АНТ-2.

Ареометр представляет собой прибор для проведения измерений  плотности  жидкостей. Зачастую имеет вид стеклянной трубки, в верхней части которой находится шкала значений плотности.

Крайне высокая плотность топлива означает, что в его составе присутствует больше тяжелых фракций. Для нормальной работы дизельного мотора наличие тяжелых фракций является негативным аспектом, так как испаряемость и  процессы распыла в камере сгорания ДВС ухудшаются. В топливной системе и самих цилиндрах дизеля от езды на таком горючем постепенно накапливаются отложения и нагар.  

Согласно действующим стандартам по ГОСТу:

  • плотность летнего дизельного топлива — 860 кг/м3;
  • плотность зимнего дизтоплива — 840 кг/м3;
  • плотность арктического дизеля — 830 кг/м3;

Приведенные выше фиксированные показатели подразумевают одинаковую температуру дизельного топлива на отметке +20С, так как плотность солярки напрямую зависит от температуры горючего. На основании ГОСТ становится понятным, что плотность солярки имеет зависимость как от температуры, так и от конкретной марки ДТ. Зимний дизель имеет меньшую плотность сравнительно с летней соляркой. Меньшая плотность дизтоплива для зимы позволяет такому горючему сохранять текучесть и противостоять застыванию в условиях низких температур.  

Что касается удельного веса дизельного топлива, тогда по стандартам:

  • летнее дизтопливо должно иметь удельный вес в рамках до 8440 Н/м3;
  • зимний дизель имеет удельный вес до 8240 Н/м3;

Получается, что вес 1 литра дизельного горючего может составлять от 830 до 860 грамм, что будет зависеть от марки дизельного топлива по сезону и температуры. Чем выше окажется температура  дизтоплива, тем меньший вес будет иметь 1 литр такого горючего.

С учетом качественного топлива изменение температуры солярки на 1 градус по Цельсию приведет к изменению его плотности на 0,00075. Указанный коэффициент позволяет произвести расчеты величины плотности солярки применительно к тем или иным температурным показателям. Стоит учитывать, что подсчитать удается плотность исключительно чистого топлива.  

Точную плотность солярки на АЗС с опорой на данный коэффициент  определить сложнее, так как необходимо  дополнительно учитывать количество содержащихся присадок и примесей в ДТ. Более того, состав таких примесей в конечном продукте на заправках зачастую неизвестен, что сильно затрудняет любые перерасчеты.

Содержание статьи

Почему зимой расход дизельного топлива больше

Характеристика плотности дизельного определяет не только порог его застывания и замерзания. Плотность ДТ также указывает на количество энергии, которое выделяет горючее. Более высокий показатель плотности означает большее количество выделяющейся энергии в процессе сгорания в рабочей камере дизельного ДВС. Чем выше будет плотность солярки, тем большим окажется КПД двигателя. Дополнительно плотность повлияет на расход дизельного топлива на 100 км. Более плотное ДТ в топливном баке заметно повышает экономичность двигателя.

Зимняя или арктическая солярка для дизельного мотора всегда имеет меньшую плотность. Для высвобождения энергии и получения необходимой отдачи от силового агрегата потребуется сжигать большее количество такой солярки сравнительно с более плотным топливом, которое используется в летний период. Этим объясняется повышенный расход менее плотного дизельного топлива зимой.

Рекомендуем также прочитать статью о том, что делать, если дизельный двигатель плохо заводится зимой. Из этой статьи вы узнаете как завести дизель в мороз, а также найдете ответы на вопросы, почему дизельный двигатель не заводится «на холодную».

Использование летней солярки для повышения экономичности дизельного агрегата не допускается. В составе летнего дизтоплива присутствуют не только базовые углеводороды, которые  обеспечивают энергию в процессе сгорания, но и парафины в растворенном состоянии. Снижение температуры вызывает начало активной парафинизации топлива, когда горючее утрачивает свою текучесть и превращается в гель.

Парафины не позволяют эффективно прокачивать солярку по системе питания дизельного мотора, забивают топливопроводы и фильтры тонкой очистки. По этой причине в состав дизельного топлива для зимы вводят дополнительные компоненты. Главной задачей становится предотвращение гелеобразования и замерзания парафинов путем добавки специальных присадок. Такие присадки в процессе производства повышают температурный порог замерзания солярки, но на плотность ДТ никакого влияния не оказывают.

Ошибочно полагать, что если залит в бак «летний» дизель и самостоятельно добавить присадку-антигель, то это позволит избежать застывания горючего. Первое, присадки не способны оказать воздействие на уже замерзшую солярку, так как загустевшие парафины растворить она не способна. Второе, присадки в дизель не воздействуют на его плотность, так как их механизм воздействия на топливо другой. Антигели в солярку только предотвращают процесс активной парафинизации.

Дизтопливо с меньшей плотностью обладает лучшей текучестью. Получается, что даже при низких температурах солярка будет свободно проходить по топливопроводу, не создавая пробок. По этой причине для зимы используется ДТ с меньшим показателем плотности. В теплое время года характеристика плотности солярки не имеет первостепенной важности. Для летнего дизеля основными показателями является степень содержание серы и цетановое число.  

Как самому проверить плотность дизельного топлива

Владельцам дизельных авто рекомендуется заправляться на заправочных станциях, где гарантированно продают зимнее или арктическое дизельное топливо. Потребность самостоятельно проверить плотность солярки «в полевых условиях» может возникнуть тогда, когда вы сомневаетесь в качестве дизтоплива при заправке на непроверенных АЗС.

Проверять плотность ДТ самостоятельно лучше при температуре от –10C и более. Для проверки плотности солярки необходимо налить небольшое количество топлива на поверхность из металла. Далее нужно обратить внимание на помутнение и текучесть. Если солярка нормально стекает и не застывает, тогда можно заправляться. Если заметны признаки помутнения и снижения текучести, тогда от такой заправки стоит отказаться. Качественное зимнее дизельное топливо замерзает при температурном показателе около –45C по Цельсию.

Для быстрого анализа можно также достать заправочный пистолет и оценить состояние капель горючего на его конце. Солярка не должна застывать. Желательно также осуществлять частичную заправку дизеля, то есть смешать ранее проверенную солярку в баке со свежей. Для этого рекомендуется зимой всегда держать половину топливного бака заполненным.

Более точно проверить плотность дизтоплива можно следующим образом. Солярка наливается в небольшую емкость и далее помещается в условия, где температура воздуха находится на отметке около + 17-20 градусов на такое время, чтобы топливо прогрелось до аналогичного температурного показателя. Далее плотность дизеля измеряется при  помощи ареометра. Полученные данные необходимо сравнить с теми стандартами, которым по ГОСТу должно соответствовать приобретенное дизтопливо.

Читайте также

  • Срок годности дизельного топлива

    Условия правильного хранения дизельного горючего и сроки его годности. Как обеспечить сохранность дизтоплива при длительном хранении: фильтрация и добавки.

Удельный вес дизельного топлива. расчет удельного веса дизтоплива.

Компания «Ренетоп» предлагает низкую цену на дизельное топливо с доставкой по Уралу.

Удельный вес рассчитывается путем умножения плотности на коэффициент ускорения свободного падения, который всегда составляет 9,81 м/с2. Например, 1 кг дизельного топлива плотностью 840 кг/м3 будет иметь удельный вес 8240 Н/м3.

Важную роль отыгрывает плотность дизельного топлива. Она меняется при перемене температуры топлива. При изменении температуры на 1 градус по Цельсию плотность изменяется коэффициент 0,0007. При снижении температуры на 1 градус плотность повышается, при повышении снижается.

Посмотрите наши цены:

Удельный вес дизтоплива летнего

Удельный вес летнего дизтоплива напрямую зависит от его температуры. Государственным стандартом установлен в пределах 8440 Н/м3.

Удельный вес дизтоплива зимнего

Удельный вес зимнего топлива зависит от его температуры. Государственным стандартом установлен в пределах 8240 Н/м3.

Формулы расчета плотности, веса и объема дизтоплива

Формула определения веса ДТ

Вес топлива определяется умножением плотности нефтепродукта на его объем. 1850 литров ДТ при плотности 0,840 кг/м3 будет весить 1554 кг. 1000 литров дизтоплива плотностью 0,860 кг/м3 будет весить 860 кг.

Формула определения объема ДТ

Актуальный при транспортировке, реализации и бухгалтерском учете вопрос: как перевести вес топлива в объем?

Чтобы узнать объем дизельного топлива необходимо его массу поделить на плотность. Если есть 1 тонна ДТ, а его плотность составляет 0,840 кг/м3 – объем составит 1 190 литров 476 грамм.

Формула определения плотности ДТ

Плотность дизельного топлива – это соотношение массы нефтепродукта к его объему. Если есть 860 кг дизтоплива объемом 1000 литров, то плотность составит 0,860 кг/м3.

Плотность дизельного топлива регламентируется ГОСТ 305-82. Стандарт фиксирует значение при 20 градусах по Цельсию. Плотность дизтоплива, в зависимости от его сезонного вида государственными стандартами установлена следующая:

  • зимнего – 860 кг/м3;
  • летнего — 840 кг/м3;
  • арктического – 830кг/м3.

Для определения плотности дизельного топлива другим методом нужно:

  • В паспортных данных нефтепродукта найти плотность нефтепродукта при 20 градусах по Цельсию.
  • Замерять фактическую температуру дизельного топлива в емкости для транспортировки или хранения.
  • Разность температуры умножаем на коэффициент 0,0007.
  • Вносим поправку. Если температура выше – отнимаем значение от паспортной плотности, если ниже добавляем.

Калькулятор плотности нефтепродуктов по ГОСТ 3900

Нефтепродукт при температуре -25-24,5-24-23,5-23-22,5-22-21,5-21-20,5-20-19,5-19-18,5-18-17,5-17-16,5-16-15,5-15-14,5-14-13,5-13-12,5-12-11,5-11-10,5-10-9,5-9-8,5-8-7,5-7-6,5-6-5,5-5-4,5-4-3,5-3-2,5-2-1,5-1-0,500,511,522,533,544,555,566,577,588,599,51010,51111,51212,51313,51414,51515,51616,51717,51818,51919,52020,52121,52222,52323,52424,52525,52626,52727,52828,52929,53030,53131,53232,53333,53434,53535,53636,53737,53838,53939,54040,54141,54242,54343,54444,54545,54646,54747,54848,54949,55050,55151,55252,55353,55454,55555,55656,55757,55858,55959,56060,56161,56262,56363,56464,56565,56666,56767,56868,56969,57070,57171,57272,57373,57474,57575,57676,57777,57878,57979,58080,58181,58282,58383,58484,58585,58686,58787,58888,58989,59090,59191,59292,59393,59494,59595,59696,59797,59898,59999,5100100,5101101,5102102,5103103,5104104,5105105,5106106,5107107,5108108,5109109,5110110,5111111,5112112,5113113,5114114,5115115,5116116,5117117,5118118,5119119,5120120,5121121,5122122,5123123,5124124,5125°C
имеет плотность кг/м3
Рассчитать его плотность
при температуре
-25-24,5-24-23,5-23-22,5-22-21,5-21-20,5-20-19,5-19-18,5-18-17,5-17-16,5-16-15,5-15-14,5-14-13,5-13-12,5-12-11,5-11-10,5-10-9,5-9-8,5-8-7,5-7-6,5-6-5,5-5-4,5-4-3,5-3-2,5-2-1,5-1-0,500,511,522,533,544,555,566,577,588,599,51010,51111,51212,51313,51414,51515,51616,51717,51818,51919,52020,52121,52222,52323,52424,52525,52626,52727,52828,52929,53030,53131,53232,53333,53434,53535,53636,53737,53838,53939,54040,54141,54242,54343,54444,54545,54646,54747,54848,54949,55050,55151,55252,55353,55454,55555,55656,55757,55858,55959,56060,56161,56262,56363,56464,56565,56666,56767,56868,56969,57070,57171,57272,57373,57474,57575,57676,57777,57878,57979,58080,58181,58282,58383,58484,58585,58686,58787,58888,58989,59090,59191,59292,59393,59494,59595,59696,59797,59898,59999,5100100,5101101,5102102,5103103,5104104,5105105,5106106,5107107,5108108,5109109,5110110,5111111,5112112,5113113,5114114,5115115,5116116,5117117,5118118,5119119,5120120,5121121,5122122,5123123,5124124,5125°C

Жидкости — Плотность

Плотность некоторых распространенных жидкостей:

78 9000 Бутан

7 8536 Carene 900 6 6 901

0

Муравьиная кислота с концентрацией 80% Масло фундука 1

0 Гексиламин

Алкоголь 6 6656 900 9006 15 9000 Азотная кислота 90 006 9000 12036 Пропиленарбонат

7 7
Жидкость Температура
т
( o C)
Плотность
ρ
(кг / м 3 )

Ацетальдегид 18 783
Уксусная кислота 25 1049
Ацетон 25 784.6
Ацетонитрил 20 783
Акролеин 20 840
Акролонитрил 25 801
Спирт этил (этанол)
Спирт метил (метанол) 25 786,5
Спирт пропил 25 800,0
Миндальное масло 25 910
Алилламин 758
Аммиак (водный) 25 823.5
Анилин 25 1019
Анизол 20 994
Масло из косточек абрикоса 25 910
Масло из семян арганы 20 912
Автомобильные масла 15 880 — 940
Масло из мякоти авакадо 25 912
Пальмовое масло Бабассу 25 914
Говяжий жир (наземные животные) 25 902
Пиво (варьируется) 10 1010
Бензальдегид 25 1040
Бензол 25 873.8
Benzil 15 1230
Масло черной смородины 20 923
Сало борнео 100 855
Рассол 15 12306 900 Бром 25 3120
Бутанал 20 802
Масляный жир (наземные животные) 15 934
Масляная кислота 20 959
25 599
2,3-бутандион 18 981
2-бутанон 25 800
н-бутилацетат 20 880
н-Бутиловый спирт (бутанол) 20 810 90 037
н-Бутилхлорид 20 886
Масло Cameline 15 924
Рапсовое масло канолы 20 915
Капроновая кислота 921 900
Карболовая кислота (фенол) 15 956
Дисульфид углерода 25 1261
Тетрахлорид углерода 25 1584
7 25
Масло кешью 15 914
Касторовое масло 25 952
Масло из косточек вишни 25 918
Куриный жир 15 918
Китайский овощной жир 25 887
Хлорид 25 1560
Хлорбензол 20 1106
Хлороформ 20 1489
Лимонная кислота, 50% водный раствор 15 1220
Масло какао 25 974
Кокосовое масло 40 930
Масло печени трески 15 924
Масло ореха кохун 25 914
Кукурузное масло 20 919
Масло семян Corriander 25 908
Масло семян хлопка 20 920
Крамбе масло 25 906
Крезол 25 1024
Креозот 15 1067
Сырая нефть, 48 o API 60 o F (15 .6 o C) 790
Сырая нефть, 40 o API 60 o F (15,6 o C) 825
Сырая нефть, 35,6 o API 60 o F (15,6 o C) 847
Сырая нефть, 32,6 o API 60 o F (15,6 o C) 862
Сырая нефть, Калифорния 60 o F (15.6 o C) 915
Сырая нефть, мексиканская 60 o F (15,6 o C) 973
Сырая нефть, Техас 60 o F ( 15,6 o C) 873
Кумол 25 860
Циклогексан 20 779
Циклопентан 20 745
726.3
Дизельное топливо от 20 до 60 15 820 — 950
Диэтаноламин 20 1097
Диэтиловый эфир 20 714
о-Дихлорбензол 20 1306
Дихлорметан 20 1326
Диэтиловый эфир 20 714
Диэтиленгликоль 15 1120
Диэтиловый эфир 20 906
Дихлорметан 20 1326
Диизопропиловый эфир 25 719
Диметилацетамид 20 942
Nform, Nform 20 949 9003 7
Диметилсульфат 20 1332
Диметилсульфид 20 848
Диметилсульфоксид 20 1100
Додекан 75
Этан -89 570
Эфир 25 713,5
Этиламин 16 681
Этилацетат 20
Этиловый спирт (этанол, чистый спирт, зерновой спирт или питьевой спирт) 20 789
Этиловый эфир 20 713
Этилен дихлорид 20 1253
Этилен гликоль 25 1097
Масло семян Euphorbia lagascae 25 952
Трихлорфторметановый хладагент R-11 25 1476
Дихлордифторметан Дихлордифторметан 1311
шасси лородифторметановый хладагент R-22 25 1194
Формальдегид 45 812
Муравьиная кислота с концентрацией 10% 20 1025
20 1221
Мазут 60 o F (15.6 o C) 890
Furan 25 1416
Furforal 25 1155
Бензин, природный 60 o F (15,6 o C) 711
Бензин, Транспортное средство 60 o F (15,6 o C) 737
Газойль 60 o F (15,6 o C) 890
Глюкоза 60 o F (15.6 o C) 1350-1440
Глицерин 25 1259
Глицерин 25 1126
Масло из виноградных косточек 20 923
25 909
Мазут 20 920
Конопляное масло 25 921
Гептан 25 679.5
Масло сельди 20 914
Гексан 25 654,8
Гексанол 25 811
Гексен 25
Гексен 25
20 766
Гидразин 25 795
Масло Иллипе Маура 100 862
Ионен 25 932
20 802
Изооктан 20 692
Изопропиловый спирт 20 785
Изопропилбензол гидропероксид 20 1030
853
Масло семян капока 15 926
Керосин 60 o F (15.6 o C) 820,1
Линоленовая кислота 25 897
Льняное масло 25 924
Машинное масло 20 910
растительное масло 15 912
Menhaden oil 15 920
Mercury 13590
Метан -164 465
Метанол 791
Метиламин 25 656
Метил-изоамилкетон 20 888
Метил-изобутилкетон 20- 801 Methyl Ketone n 20 808
Метил tB утиловый эфир 20 741
N-Метилпирролидон 20 1030
Метилэтилкетон 20 805
Молоко 15 1020-90 Масло семян Moringa peregrina 24 903
Масло семян горчицы 20 913
Сало баранины 15 946
Нафта 15
Нафта, древесина 25 960
Нафталин 25 820
Масло нима 30 912
Масло семян Нигера 924
0 1560
Овсяное масло 25 904
Овсяное масло 25 917
Оцимен 25 798
Октан 15 698.6
Масло смоляное 20 940
Скипидарное масло 20 870
Масло смазочное 20 900
Oiticica oil 20 972
Оливковое масло 20 911
Кислород (жидкий) -183 1140
Пальмоядровое масло 15 922
Пальмовое масло 15 914
Пальмовый олеин 40 910
Пальмовый стеарин 60 884
Паральдегид 20 994
Парафин
Пальмитиновая кислота 25 851
Арахисовое масло 20 914
Пентан 20 626
Пентан 25 625
Перхлор этилен 20 1620
25 924
Нефтяной эфир 20 640
Бензин, природный 60 o F (15.6 o C) 711
Бензин, Автомобиль 60 o F (15,6 o C) 737
Фенол (карболовая кислота) 25 1072
Фосген 0 1378
Фитадиен 25 823
Масло Phulwara 100 862
Пинен 25 857 Пинен 25 857 15 919
Маковое масло 25 916
Свиной сало 20 898
Пропанал 25 866
— Пропан 40 493.5
Пропан, R-290 25 494
Пропанол 25 804
Пропиламин 20 717
20 900
Пропилен 25 514,4
Пропиленгликоль 25 965,3
Пиридин 25 979
Пиррол 25 966 966

0 Семена масло

20 920
Резорцин 25 1269
Масло рисовых отрубей 25 916
Канифольное масло 15 98037
Лососевое масло 900 15 924
Масло сардины 25 915
Морская вода 25 1025
Масло из семян морепродуктов 15 924
Масло печени акулы 25 917
Шианутовое масло 100 863
Силан 25 718
Силиконовое масло 25 965 — 980
Гидроксид натрия (каустическая сода) 15 1250
Сорбальдегид 25 895
Соевое масло 20 920
Стеариновая кислота 25 891
25
Дихлорид серы 1620
Серная кислота с концентрацией 95% 20 1839
Серная кислота -20 1490
Сульфурилхлорид 1680
Раствор сахара 68 брикса 15 1338
Подсолнечное масло 20 919
Стирол 25 903
Талловое масло 25 969
Терпинен 25 847
Тетрагидрофуран 20 888
Толуол 20 867
Трихлорэтилен 20 1470
Триэтиламин 20

7
Трифторуксусная кислота d 20 1489
Тунговое масло 25 912
Скипидар 25 868.2
Масло масло Ucuhuba 100 870
Масло семян вернонии 30 901
Масло грецкого ореха 25 921
Вода тяжелая 11,6 900 1105
Вода — чистая 4 1000
Вода — морская 77 o F (25 o C) 1022
Китовый жир 15 925
Масло пшеничных зародышей 25 926
о-ксилол 20 880
м-ксилол 20 864
p-ксилол 20 861
  • 1 кг / м 3 = 0.001 г / см 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (британская система мер) = 0,1335 унций / галлон (США) = 0,0624 фунта / фут 3 = 0,000036127 фунтов / дюйм 3 = 1,6856 фунта / ярд 3 = 0,010022 фунта / галлон (британская система мер) = 0,008345 фунта / галлон (США) = 0,0007525 тонна / ярд 3

Обратите внимание, что даже если фунты на кубический фут часто используются в качестве меры плотности в В США фунты на самом деле являются мерой силы, а не массы. Слизни — верное средство измерения массы. Вы можете разделить фунты на кубический фут на 32.2 за приблизительную стоимость в слагах.

Топливо для дизель-бензиновых двигателей и их свойства

1. Введение

Топливо можно разделить на три группы: твердое, жидкое и газообразное. Хотя жидкие углеводороды обычно используются в двигателях внутреннего сгорания, в городском транспорте, где загрязнение воздуха является проблемой, биотопливо, такое как спирты и биодизельное топливо или газообразное топливо, которое представляет собой сжиженный нефтяной газ (СНГ) или природный газ, редко использовалось в качестве топлива. .Важность использования альтернативных видов топлива в двигателях внутреннего сгорания возникает из-за ограниченных ресурсов нефти и уменьшения запасов, роста цен на нефть и возрастающих экологических проблем. Для уменьшения зависимости от нефти особый интерес для исследователей представляют альтернативные виды моторного топлива, такие как растительные масла, биотопливо (спирты, биодизель, биогаз) и сжиженный водородный газ [1, 2].

2. Топливо на углеводородной основе

Топливные соединения, содержащие атомы углерода и водорода в своей основной молекулярной структуре, называются топливами на углеводородной основе.Углеводороды можно разделить на две основные группы: алифатические и ароматические. Алифатические углеводороды делятся на два подкласса: насыщенные и ненасыщенные углеводороды. Атом углерода в углеводороде называется насыщенным, если он связан с четырьмя атомами водорода, и ненасыщенным, если атомы углерода образовали двойные или тройные связи углерод-углерод. Насыщенные углеводороды классифицируются как алканы; непредельные углеводороды классифицируются как алкены или алкины [3, 4]. Углеводороды могут находиться в твердой, жидкой и газовой фазах в зависимости от количества атомов углерода в химической структуре.Как правило, углеводороды с 1–4 атомами углерода находятся в газе, 5–19 — в жидкости, а молекулы с 20 и более атомами углерода — в твердой фазе [5]. C n H m — это общая замкнутая химическая формула жидких углеводородов, используемых в качестве топлива в двигателях внутреннего сгорания. Однако углеводороды состоят из водорода и углерода, а также небольших количеств O 2 , H 2 , S, H 2 O и некоторых металлов, содержащих производные сырой нефти [2]. На рис. 1 приведена классификация соединений углеводородов.

Рисунок 1.

Классификация углеводородов [3].

2.1 Алканы (парафины)

Алканы — это насыщенные углеводороды с общей замкнутой формулой C n H 2n + 2 , также известные в литературе как парафины, которые добавляют суффикс «-an» в конце Латинские углеродные числа. Алканы содержат больше водорода в своей химической структуре по сравнению с другими углеводородами, такое большое количество атомов водорода приводит к более высоким тепловым значениям и более низкой плотности, чем другие углеводороды (620–770 кг / м 3 ).По мере увеличения числа атомов углерода в углеводородной цепи свойства алканов, такие как склонность к самовоспламенению, молекулярная масса, а также точки плавления и кипения, увеличиваются. Каждое увеличение числа атомов углерода в углеводородной цепи вызывает повышение температуры кипения примерно на 20–30 ° C. Алканы нерастворимы в воде, потому что они неполярны. Среди неполярных молекул, таких как углеводороды и инертные газы, есть силы Ван-дер-Ваальса, другими словами, силы дисперсии Лондона. Сила дисперсии представляет собой слабую межмолекулярную силу между всеми молекулами посредством временных диполей, индуцированных в атомах или молекулах.Силы рассеивания обычно выражаются как силы Лондона. Число электронов и площадь поверхности молекул являются наиболее важными факторами, влияющими на величину дисперсионных сил. Эти растягивающие силы напрямую влияют на температуру кипения этих материалов. Алканы могут существовать в форме с прямой, разветвленной и циклической цепью, в зависимости от расположения атомов углерода. Силы Ван-дер-Ваальса более эффективны, чем разветвленные, потому что молекулярные поверхности алканов с прямой цепью больше контактируют друг с другом.Таким образом, температура кипения алканов с прямой цепью, имеющих одинаковую молекулярную массу, выше, чем у алканов с разветвленной цепью. Другими словами, по мере увеличения разветвления температура кипения уменьшается, потому что разветвленная структура делает молекулу более плотной. Однако увеличение разветвленности привело к сужению площади поверхности молекулы и снижению температуры кипения с уменьшением сил Ван-дер-Ваальса между ней и соседними молекулами. Склонность к воспламенению алканов с прямой цепью обычно выше, чем у алканов с разветвленной цепью, так как они легче разрушаются.В отличие от структур с прямой цепью молекул, структуры с разветвленной цепью и кольцами обладают более высокой стойкостью к воспламенению. Следовательно, алканы с прямой цепью более подходят для использования в качестве дизельного топлива, чем в качестве бензинового топлива. Однако изомеры алканов, которые имеют одинаковую замкнутую формулу, но с разными разветвленными цепями и кольцами, более подходят для использования в качестве топлива для бензиновых двигателей, поскольку они обладают более высокой детонационной стойкостью. Свойство, определяющее, воспламеняется ли топливо самопроизвольно, называется октановым числом.Другими словами, это определяется как сопротивление воспламенению. Топливо с прямой длинной цепью обычно имеет более низкое октановое число, тогда как разветвленные структуры имеют более высокое октановое число. Подводя итог, можно сказать, что октановое число обычно обратно пропорционально длине цепи молекул топлива. Чем короче цепная структура молекул топлива, тем выше октановое число. Октановое число прямо пропорционально компонентам разветвленной боковой цепи. Кроме того, кольцевая молекулярная структура топлива приводит к высоким октановым числам.Алканы присутствуют в твердой, жидкой и газообразной форме в зависимости от их углеродного числа. Углерод с числом 1–4 присутствует в газе, 5–25 — в жидкой форме и более 25 — в твердой форме. Алканы содержат менее 4 атомов углерода в своем природном газе и нефтяных газах, 5–12 атомов в бензине, 12–20 атомов в дизельном топливе и 20–38 атомов в смазочных маслах [1, 2, 3, 4, 5, 6 , 7, 8]. На рис. 2 показана молекулярная структура первых четырех алканов.

Рисунок 2.

Молекулярная структура первых четырех алканов [8].

2.2 Нафтены (циклопарафины)

Другой тип алканов — это циклические структуры, которые имеют общую формулу C n H 2n . Два атома водорода отсутствуют в нормальных алканах, потому что их структуры имеют циклическую и замкнутую форму. Поскольку количество атомов водорода мало по сравнению с нормальными алканами, они имеют более низкие термические значения, но более высокие плотности (740–790 кг / м 3 ). Циклоалканы трудно разрушить из-за их структуры замкнутого цикла и они имеют более высокую стойкость к воспламенению, чем алканы с прямой цепью.Однако они также подходят как для бензина, так и для дизельного топлива из-за того, что имеют более низкое сопротивление воспламенению, чем разветвленные. Тепловые показатели нафтенов ниже, чем у алканов, и выше, чем у ароматических углеводородов [2]. На рис. 3 показана циклическая молекулярная структура циклогексана.

Рисунок 3.

Циклическая молекулярная структура циклогексана [5].

2.3 Алкены (олефины)

Алкены представляют собой ненасыщенные углеводороды, которые имеют двойную связь между атомами углерода, показанную общей формулой C n H 2n .Олефины с одной двойной связью в молекулярной структуре называются моноолефинами (C n H 2n ), а олефины с двумя двойными связями называются диолефинами (C n H 2n-2 ). Название моноолефинов указывается после суффикса «en» или «ilen» в конце числа атомов углерода, тогда как название диолефинов получают путем присоединения суффикса «dien» к корням, показывающим число атомов углерода. Многие изомеры образуются за счет замещения двойных связей алкенов. Тепловые показатели алкенов ниже, чем у алканов, а их плотность составляет от 620 до 820 кг / м 3 из-за того, что отношение атомов углерода к атомам водорода выше в молекулярной структуре алкенов.Алкены обладают высокой стойкостью к возгоранию. Алкены менее устойчивы к окислению, чем алканы, поэтому они могут легко реагировать с кислородом. Таким образом, кислород присоединяется к алкенам и, как следствие, блокирует топливопровод. Алкены содержат двойные связи между атомами углерода, одна из которых сигма ( ), а другая — пи ( п ). По этой причине он разрушается труднее, чем алканы с одинарной сигма-связью. Алкены могут использоваться в качестве топлива для бензиновых двигателей благодаря высокой стойкости к воспламенению.Кроме того, его можно использовать в качестве дизельного топлива за счет повышения температуры самовоспламенения. Наиболее важные свойства алкенов дают реакции присоединения с соединениями H 2 , X 2 , HX и H 2 O. Атомы углерода алкенов не полностью насыщены водородом. Следовательно, алкены могут быть более легко связаны с такими элементами, как водород, хлор и бром, из-за того, что они являются более химически активными, чем алканы и нафтены. Благодаря такой реакционной структуре они используются в качестве сырья для получения топлива более высокого качества такими методами, как гидрирование, полимеризация и алкилирование.Хотя алкены присутствуют в сырой нефти в очень малых количествах, обычно они могут быть получены методами термического и каталитического крекинга, которые представляют собой нагревание или катализатор посредством разложения крупных молекулярных продуктов. Алкены присутствуют в больших количествах в бензине, полученном этими методами. Высокая стойкость к воспламенению алкенов делает их хорошим бензиновым моторным топливом, но они также могут быть дизельным моторным топливом за счет увеличения склонности к воспламенению [1, 2, 3, 5, 9]. На рис. 4 показана молекулярная структура некоторых алкенов.

Рисунок 4.

Молекулярная структура некоторых алкенов [5].

2,4 Алкины (ацетилены)

Алкины представляют собой соединения, имеющие общую замкнутую формулу C n H 2n − 2 и имеющие по крайней мере одну тройную связь (C☰C) между атомами углерода. Алкины являются ненасыщенными углеводородами из-за того, что все атомы углерода не имеют достаточного количества связей с водородом. Кроме того, у алкинов есть суффикс «-в», который добавляется в конце соединения и обозначается в соответствии с числом атомов углерода в самой длинной цепи.Самым простым и известным соединением является ацетилен (C 2 H 2 ). Алкины также могут называться производными ацетилена. Алкены более реакционноспособны, чем алканы и нафтены, потому что они ненасыщены. Таким образом, они могут легче реагировать с такими элементами, как водород, хлор и бром, с образованием соединения [3, 5, 9]. На рис. 5 представлена ​​молекулярная структура некоторых алкенов.

Рис. 5.

Молекулярная структура некоторых алкинов [5].

2.5 Ароматические соединения (производные бензола)

В конце девятнадцатого века органические соединения были разделены на два класса: алифатические и ароматические. Алифатические соединения означают, что соединения проявляют «липароидное» химическое поведение, тогда как ароматические соединения означают низкое содержание водорода / углерода и «ароматные». Ароматические углеводороды представляют собой ненасыщенные углеводороды, имеющие двойные связи между атомами углерода, которые имеют замкнутую общую формулу C n H 2n-6 . Ароматические соединения связаны друг с другом ароматическими связями, а не одинарными связями.Другими словами, ароматические углеводороды также называют аренами. Хотя ароматические углеводороды являются ненасыщенными соединениями, они имеют другие химические свойства, чем другие алифатические ненасыщенные соединения. В отличие от алкенов и алкинов, ароматические углеводороды не дают реакции присоединения, которая является характерной реакцией ненасыщенных соединений. Кроме того, ароматические углеводороды проводят реакции замещения, особенно характерные для насыщенных углеводородов. По этим причинам ароматические углеводороды более стабильны, чем другие ненасыщенные соединения, поэтому ароматические углеводороды классифицируются как отдельный класс углеводородов.Благодаря наличию более чем одного атома углерода с двойной связью и циклической структуры они имеют прочную структуру связей и обладают высокой устойчивостью к воспламенению. Плотность ароматических углеводородов находится в диапазоне от 800 до 850 кг / м 3 . Более высокие плотности в жидком состоянии приводят к тому, что они имеют высокое содержание энергии на единицу объема, но имеют низкую тепловую ценность на единицу массы. Связи между атомами углерода прочные; ароматические углеводороды обладают высокой детонационной стойкостью. Следовательно, из-за высокого октанового числа ароматических углеводородов они могут быть хорошим бензиновым топливом с добавлением бензина для повышения детонационной стойкости, но они не подходят для использования в качестве топлива для дизельных двигателей из-за их низкого цетанового числа.Простейшим ароматическим соединением является бензол с химической формулой C 6 H 6 . Основные структуры других ароматических углеводородов также составляют бензол. Как правило, они могут быть получены искусственно из угля и могут использоваться в качестве добавки к бензину для улучшения детонационной стойкости бензина. Ароматические углеводороды необходимо использовать осторожно, поскольку они канцерогены, вызывают загрязнение выхлопных газов, обладают высокой растворимостью и оказывают коррозионное воздействие на системы подачи топлива [1, 2, 3, 5, 6, 9].На рис. 6 показана молекулярная структура некоторых важных ароматических соединений.

Рис. 6.

Молекулярная структура некоторых ароматических соединений [5].

3. Топливо для двигателей внутреннего сгорания

Бензин и дизельное топливо, являющиеся производными сырой нефти, обычно используются в двигателях внутреннего сгорания. Примерная элементная структура средней сырой нефти состоит из 84% углерода, 14% водорода, 1–3% серы и менее 1% азота, атомов кислорода, металлов и солей. Сырая нефть состоит из широкого спектра углеводородных соединений, состоящих из алканов, алкенов, нафтенов и ароматических углеводородов.Это очень маленькие молекулярные структуры, такие как пропан (C 3 H 8 ) и бутан (C 4 H 10 ), но они также могут состоять из смесей различных структур с очень большими молекулами, таких как тяжелые масла и асфальт. Следовательно, для использования в двигателях внутреннего сгорания сырую нефть необходимо перегонять. В результате тепловой перегонки сырой нефти получаются нефтепродукты, такие как нефтяные газы, топливо для реактивных двигателей, керосин, бензин, дизельное топливо, тяжелое топливо, машинные масла и асфальт.В целом перегонка сырой нефти привела к получению в среднем 30% бензина, 20–40% дизельного топлива и 20% мазута, а тяжелых масел получается от 10 до 20% [2, 5].

При перегонке сырой нефти получается бензин при температуре от 40 до 200 ° C, а дизельное топливо — при температуре от 200 до 425 ° C. Чтобы использовать эти виды топлива в двигателях, необходимо учитывать некоторые важные физические и химические свойства, такие как удельный вес топлива, структурный компонент, тепловая ценность, точка вспышки и температура сгорания, температура самовоспламенения, давление пара, вязкость топлива, поверхностное натяжение, температура замерзания и хладотекучесть.Удельная масса, плотность топлива уменьшается с увеличением содержания водорода в молекуле. Плотность бензина и дизельного топлива обычно указывается в кг / м 3 при 20 ° C. Номер Американского института нефти (API) — это международная система измерения, которая классифицирует сырую нефть по ее вязкости в соответствии с американскими стандартами. Удельный вес можно определить как отношение веса данного объема данного вещества при 15,15 ° C (60 ° F) к весу воды при том же объеме и температуре.Соотношение между числом API и удельным весом выражается следующим образом [1, 2, 5]:

Удельный вес 15,15 ℃ / 15,15 ℃ = ρобр15,15 ℃ ρводы15,15 ℃ E1

API = 141,5 Удельный вес 15,15 ℃ /15.15℃−131.5E2

В соответствии с номером API сырая нефть делится на три группы: тяжелая, средняя и легкая, и по мере увеличения количества API сырая нефть становится тоньше. Степень API дизельного топлива варьируется от 25 до 45. Вязкость, цвет, основной компонент и определение сырой нефти в соответствии с классом API приведены в таблице 1 [1, 5].

Класс по API Определение Вязкость Цвет Состав
0–22,3 ° Тяжелая Тяжелая Вязкость Too 22,3–31,3 ° Средний Средний Коричневый Дизель + бензин
31,3–47 ° Легкий Жидкость Светло-желтый Бензин

Таблица 1.

Классификация сырой нефти по классу API [5].

Если плотность бензина составляет ρ = 700–800 кг / м 3 , то для дизельного топлива она колеблется в пределах ρ = 830–950 кг / м 3 . В то время как содержание углерода в алкановом и нафтеновом топливе составляет 86%, для ароматических углеводородов оно составляет около 89%. Помимо атомов углерода и водорода, в бензине и дизельном топливе можно найти серу, асфальт и воду. В частности, сера может вызвать коррозию деталей двигателя, а продукты сгорания серы негативно влияют на окружающую среду.Асфальт прилипает к клапану на поверхностях поршня и вызывает износ. Вода вызывает коррозию и снижает тепловую ценность топлива. Это нежелательные компоненты топлива. Тепловые значения жидкого топлива даны в единицах энергии массы (кДж / кг или ккал / кг), а тепловые значения газовых топлив — в единицах энергии (кДж / л, кДж / м 3 или ккал / м 3 ). Тепловая ценность топлива выражается двумя способами: более низкая и более высокая теплота сгорания. Если в конце измерения вода в топливе находится в парообразном состоянии, это дает более низкую тепловую ценность этого топлива.Когда вода в топливе конденсируется в конце измерения, она передает системе тепло испарения, а измеренное значение дает более высокую теплотворную способность топлива. В результате однофазный пар получается в капсуле калориметра в результате измерения теплового значения, так что измеряется более низкая теплотворная способность. Двойная фаза (фаза жидкость-пар) получается так, что измеряется более высокая теплотворная способность. Когда температура топливовоздушной смеси достаточно высока, топливо начинает воспламеняться само без внешнего воспламенения.Эта температура называется температурой самовоспламенения (SIT) топлива и временем задержки сгорания топлива

BIOFUELS (Часть 2). Дизельные двигатели Как дизельные, так и бензиновые двигатели превращают топливо в энергию в результате серии небольших взрывов или возгораний.

Презентация на тему: «БИОТОПЛИВО (Часть 2). Дизельные двигатели Как дизельные, так и бензиновые двигатели превращают топливо в энергию в результате серии небольших взрывов или возгораний.»- Стенограмма презентации:

1 БИОТОПЛИВО (Часть 2)

2 Дизельные двигатели Как дизельные, так и бензиновые двигатели превращают топливо в энергию в результате серии небольших взрывов или возгораний.Основное различие между дизелем и бензином заключается в том, как происходят эти взрывы. В газовых двигателях топливо смешивается с воздухом, сжимается поршнями и воспламеняется от искры свечей зажигания. Газовые двигатели работают с соотношением воздух-топливо 10: 1. В дизельном двигателе сначала сжимается воздух, а затем впрыскивается топливо. Поскольку воздух нагревается при сжатии, топливо воспламеняется без искры. — Сжатие воздуха делает его концентрированным. Когда молекулы воздуха упакованы так плотно, дизельное топливо имеет больше шансов вступить в реакцию с максимально возможным количеством молекул кислорода, повышая эффективность сгорания.Дизельные двигатели сжимаются в соотношении 20: 1.

3 Дизельный двигатель Бензиновый двигатель

4 О дизельном топливе Дизельное топливо тяжелее, жирнее, испаряется медленнее и горит при более высокой температуре, чем бензин. Он содержит больше атомов углерода в более длинных цепочках, чем бензин. Для создания дизельного топлива требуется меньше переработки, поэтому раньше оно было дешевле бензина.- Однако с 2004 года спрос на дизельное топливо вырос по нескольким причинам, включая рост индустриализации и строительства в Китае. Дизельное топливо имеет более высокую удельную энергию, чем бензин. В среднем 1 галлон дизельного топлива содержит приблизительно 1,55×10 8 Дж, а 1 галлон бензина — 1,32×10 8 Дж.


5 Недостатки дизельного топлива Во время большого нефтяного кризиса 1970-х годов европейские автомобильные компании начали рекламировать дизельные двигатели для коммерческого использования в качестве альтернативы бензину.- Те, кто пробовал это, были немного разочарованы — двигатели были очень громкими, и они приходили домой и обнаруживали, что их машины от корки до корки покрыты черной копотью — Однако за последние 30-40 лет произошли значительные улучшения. сделан на работоспособность двигателя и чистоту топлива. — Устройства впрыска теперь управляются современными компьютерами, которые контролируют сгорание топлива, повышают эффективность и сокращают выбросы.

6 Биодизель Биодизель производится в основном из растительных масел.Знакомые культуры, такие как соя, рапс, рапс, пальма, семена хлопка, подсолнечник и арахис, используются для производства биодизеля. Биодизель можно производить даже из переработанного кулинарного жира. Источники можно пополнить за счет сельского хозяйства и переработки. Биодизель можно использовать в дизельных двигателях с небольшими изменениями или без них. Хотя биодизель можно использовать в чистом виде, его обычно смешивают со стандартным дизельным топливом. Наиболее распространенная смесь — это B20, или 20 процентов биодизеля на 80 процентов стандартного биодизеля.С. получают путем извлечения масла из соевых бобов.


8 Топливные водоросли (микроводоросли) Новейшие ученые в области биотоплива не ограничиваются кукурузой и сахарным тростником; они нацелились на микроскопические организмы, которые они надеются уговорить произвести топливо. Известно, что микроводоросли естественным образом производят и хранят масла, аналогичные по содержанию растительным маслам. — Если ученые смогут генетически спроектировать склонность водорослей к хранению масла, чтобы сделать их более быстрыми и эффективными, это может привести к коммерчески жизнеспособным уровням транспортного топлива. Ключевые проблемы включают: — выбор подходящих штаммов водорослей — выращивание водорослей с оптимальной скоростью пути, контролирующие добычу нефти

12 Мировое производство биодизеля достигло 3.8 миллионов тонн в 2005 году. Примерно 85% производства биодизеля приходилось на Европейский Союз. В 2007 году в США средние розничные цены на бензин B2 / B5 были ниже, чем на нефтяное дизельное топливо, примерно на 12 центов, а смеси B20 были такими же, как на бензин. К июлю 2009 года средняя стоимость B20 была на 15 центов за галлон выше, чем у нефтяного дизельного топлива.

Плотность дизельного топлива — Большая Химическая Энциклопедия

Плотность тяжелого топлива превышает 0,920 кг / л при 15 ° C.Потребители судового дизельного топлива уделяют пристальное внимание плотности топлива из-за необходимости центрифугировать воду из топлива. При превышении 0,991 кг / л разница плотностей между двумя фазами — водной и углеводородной — становится слишком малой для правильной работы обычных центрифуг. Технические усовершенствования возможны, но дороги. В крайних случаях, когда топливо слишком тяжелое, можно полагаться на водно-топливные эмульсии, которые могут иметь некоторые преимущества, заключающиеся в улучшении распыления в форсунке для впрыска и снижении выбросов загрязняющих веществ, таких как дым и оксиды азота.[Pg.236]

Жидкое топливо для наземных газовых турбин сегодня лучше всего определяется спецификацией ASTM D2880. Таблица 4 содержит подробные требования к пяти маркам, которые охватывают диапазон летучести от нафты до остаточного топлива. Сорта различаются в первую очередь по основным свойствам, связанным с летучестью, например, дистилляция, температура вспышки и плотность топлива № 1 GT и № 2 GT соответствуют аналогичным свойствам керосина и дизельного топлива соответственно. Эти свойства не ограничены для топлива GT № 0, которое позволяет использовать нафту и широкие дистилляты.Для более тяжелых видов топлива. № 3 GT и № 4 GT, свойства, которые должны быть ограничены, включают вязкость и следы металлов. [Pg.409]

Рис. 2. Относительный объем и масса различных топливных систем, приведенных к дизельному топливу, с точки зрения плотности хранения.
DMFC является наиболее привлекательным типом топливных элементов в качестве силовой установки для электромобилей и портативного источника энергии, поскольку метанол представляет собой жидкое топливо, удельная энергия и удельная энергия которого примерно вдвое меньше, чем для жидких углеводородных топлив (бензин). и дизельное топливо).[Стр.113]

В таблице 41.3 показано сравнение характеристик Pt / Pd TUD-1 с коммерческим катализатором Pt / Pd (26). Исходным сырьем является типичный прямогонный газойль (SRGO), предшественник дистиллята для дизельного топлива. При идентичных условиях испытаний катализатор TUD-1 достиг 75% насыщения ароматических углеводородов по сравнению с 50% для того же объема коммерческого катализатора. Этот превосходный результат особенно интересен, поскольку катализатор TUD-1 имел гораздо меньшую плотность, чем коммерческий материал, так что в реакторе требовалось меньше катализатора по массе.[Pg.373]

Рис. 20. Зависимость потенциала элемента и плотности тока от времени для / 2-декана, толуола и дизельного топлива. Каждое из видов топлива подавалось в ячейку с N2 в концентрации 40 мас.% Углеводорода. (Печатается с разрешения ссылки 105. Copyright 2001 The Electrochemical Society, Inc.) …
Жидкие продукты содержат серу и азот и должны подвергаться гидрообработке для повышения качества. Отдельные установки гидрообработки для обогащения фракций нафты, керосина и газойля могут использоваться для оптимизации всего процесса.Очищенный газойль или дизельное топливо имеют ароматические свойства и содержат больше циклопарафинов, чем обычная сырая нефть. Получаемое в результате топливо имеет низкое цетановое число, высокую плотность и, как правило, обладает очень хорошими характеристиками работы при низких температурах. [Pg.294]

Плотность, г / см3 15,56 ° C Обычно выше, чем у обычного дизельного топлива … [Pg.304]

Плотность энергии СПГ составляет около 67% от плотности бензина (Таблица 2-6) и 59 % от дизельного топлива. Это говорит о том, что на литр бензина и 1 литр требуется 1,5 литра СПГ.7 литров СПГ равняются литру дизельного топлива. Как и в резервуарах для СПГ, резервуары для СПГ имеют меньший объем хранения топлива по сравнению с общим внешним объемом, чем типичный резервуар для дизельного топлива, из-за изоляции, необходимой для сохранения СПГ холодным. [Стр.65]

Метиловые эфиры сои и рапса имеют плотность, аналогичную плотности дизельного топлива. Их температуры застывания не столь благоприятны. Обычный метиловый эфир соевых бобов имеет очень высокую температуру застывания (-3 ° C [-27 ° F]), что может вызвать проблемы для транспортных средств в большинстве нетропических климатических условий.Метиловый эфир рапсового масла, указанный в таблице 2-8, демонстрирует улучшение температуры застывания, возможное просто за счет удаления некоторых сложных эфиров с более высокими температурами застывания. Без сомнения, добавки улучшили бы температуру застывания этих топлив. [Pg.70]

Таблица 3 показывает, что удельная энергия СПГ на единицу объема (МДж / л) выше, чем у любого альтернативного топлива на основе газа, и предлагает диапазон, который примерно в 2,5 раза превышает диапазон КПГ. Таблица также показывает, что СПГ имеет почти 60% энергетической плотности дизельного топлива.[Стр.119]

Дизельный индекс аппроксимация цетанового числа (q.v.) дизельного топлива (q.v.), рассчитанного по плотности. v.) и анилиновой точки ([Pg.430]


Различия в КПД дизельных и бензиновых двигателей

Почему дизельный двигатель эффективнее бензинового?

Степень сжатия двигателя определяет степень сжатия газов в цилиндре двигателя. Желательна высокая степень сжатия двигателя, поскольку он создает больше тепла от сжатия, а также лучше смешивает и испаряет молекулы воздуха и топлива, заставляя их перемещаться в более тесное пространство.Двигатель с высокой степенью сжатия обеспечивает большую мощность при сгорании топлива и может генерировать большую силу от этой мощности.

Сжатие воздуха

В дизельном двигателе сжимается только воздух , после чего впрыскивается топливо. Это позволяет дизельным двигателям достигать очень высоких степеней сжатия от 14: 1 до 23: 1.

В бензиновом двигателе и воздух, и топливо всасываются в двигатель одновременно , что ограничивает степень сжатия в цилиндре двигателя.Бензин также имеет более низкую температуру сгорания. Степень сжатия в автомобилях обычно составляет от 7: 1 до 10: 1. Высокие степени сжатия могут вызвать детонацию или детонацию бензиновых двигателей, если используется топливо с более низким октановым числом. Это может снизить эффективность или вызвать повреждение двигателя.

Регулировка оборотов двигателя

Эффективность двигателя также определяется тем, как регулируется частота вращения двигателя. Скорость напрямую зависит от того, сколько топлива сожжено.

В бензиновых двигателях количество воздуха , поступающего в двигатель, регулируется дроссельной заслонкой в карбюраторе.В карбюраторе количество топлива, которое может смешиваться с воздухом, определяется скоростью воздушного потока. Уменьшение количества воздуха, поступающего в двигатель, также снижает количество топлива, поступающего в двигатель. Увеличение потребления топлива не помогает, поскольку частота вращения двигателя не увеличивается сверх точки, в которой топливо сжигает весь доступный кислород.

С другой стороны, в дизельных двигателях нет ограничений на количество воздуха, поступающего в двигатель . Следовательно, всегда имеется достаточно кислорода для сжигания.Таким образом, частота вращения двигателя ограничивается только количеством топлива, впрыскиваемого в цилиндр двигателя. По мере добавления топлива двигатель будет пытаться достичь большей скорости, чтобы не отставать от более высокой скорости впрыска топлива. На самом деле дизельным двигателям нужен регулятор, который контролирует количество впрыскиваемого топлива для ограничения скорости.

Свечи зажигания

Бензиновые двигатели нуждаются в свечах зажигания для воспламенения бензина, что не требуется в дизельных двигателях, поскольку высокая степень сжатия позволяет воздуху нагреваться до очень высоких температур.

Состав топлива

Состав дизельного и бензинового топлива также влияет на эффективность этих двигателей. Дизель тяжелее бензина. Поскольку цепочки атомов водорода и углерода, из которых состоит это топливо, длиннее и тяжелее в дизельном топливе, в нем на 17% больше этих атомов по сравнению с бензином, что позволяет дизельным двигателям быть более экономичными.

Примечание:

Следует отметить, что дизельные двигатели тяжелее и требуют больше времени для разгона, чем бензиновые двигатели.Дизельный двигатель нагревается дольше, и зимой его сложно запустить. В качестве решения многие дизельные двигатели поставляются со свечами накаливания, которые помогают нагреть двигатель вместе с системой подогрева двигателя.

Статьи по Теме: .

Leave a Reply

Ваш адрес email не будет опубликован.

2019 © Все права защищены.