Подключение инвертора к солнечной батарее: Подключение солнечных панелей, схемы соединения с инвертором и контроллером
Подключение солнечных панелей, схемы соединения с инвертором и контроллером
Монтаж солнечной электростанции может стоять до половины стоимости самого оборудования. Но, сделать это вполне можно и самостоятельно. Для этого не нужно иметь никакого специального оборудования, достаточно понимать схему соединения. Их несколько, выбирать нужно в зависимости от параметров тока и напряжения, которые необходимо получить. В этой статье мы разберем все варианты.
Комплект солнечной электростанции
Типичный комплект солнечной электростанции
Данное оборудование применяется в небольших гелиосистемах которые можно использовать для дома или для дачи. К обязательным компонентам относятся:
- Солнечные панели или батареи – могут быть монокристаллические и поликристаллические. Чем отличаются и какие выбрать читайте здесь.
- Инвертор – для чего он и как его выбрать читайте в этой статье.
- Коннекторы для солнечных батарей – предназначены для быстрого подключения провода к панелям. Если бюджет ограничен, можно использовать пайку, но данное соединение намного удобнее.
- Кабель, используется одножильный медный в двойной изоляции, стойкий к любым атмосферным воздействиям, сечение от 1.5 мм.
Опционный комплектующие, которые не обязательно должны быть в системе и устанавливаются при определенных задачах:
- Аккумуляторные батареи – существует несколько вариантов, какой выбрать описано здесь.
- Контроллер заряда аккумуляторов.
- Реверсный электросчетчик, устанавливается если вы хотите продавать электроэнергию. В некоторых странах существует так называемый “зеленый тариф”, который позволяет зарабатывать, делая это.
Важные характеристики батарей, которые нужно учитывать
• Номинальное напряжение панелей – 12В или 24В.
• Максимальное напряжение при пиковой мощности Vmp.
• Напряжение холостого хода Voc – напряжение, выдаваемое панелями без нагрузки (важно при выборе контроллера заряда аккумулятора).
• Ток Imp – ток при максимальной мощности панели в А.
Схемы подключения
Существуют 3 возможные схемы подключения солнечных панелей между собой, это: последовательное, параллельное и последовательно-параллельное соединение. Теперь о них подробнее.
Последовательное соединение
В данной схеме минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и тд. Что дает такое соединение – напряжение всех панелей будет приплюсовываться. Другими словами, если вы хотите получить, например сразу 220В, данная схема поможет это сделать. но используется она крайне редко.
Разберем на примере. Имеем 4 панели с номинальной мощностью по 12В, Voc: 22.48В (это напряжение холостого хода) на выходе получаем 48В. Напряжение холостого хода = 22,48В*4=89,92В. при этом максимальная мощность тока, Imp, останется неизменной.
В данной схеме не рекомендуется использовать панели с разным значением Imp, поскольку эффективность системы будет низкая.
Параллельное соединение
К входам панелей подключаются клеммы одинакового знака, аналогично и к выходам. Удобнее всего это делать с помощью специальных Y коннекторов.Эта схема позволяет, не поднимая напряжение панелей, увеличить ток. Разберем пример. Имеем 4 панели с номинальной мощностью по 12В, напряжение холостого хода 22.48В, ток в точке максимальной мощности 5.42А. На выходе схемы номинальное напряжение и напряжение холостого хода остается без изменений, но максимальная мощность будет равна 5,42А*4=21,68А.
Последовательно-параллельное соединение
В данной схеме часть панелей соединяется последовательно, часть параллельно. Это дает возможность подобрать оптимальный режим работы электростанции путем регулирования номинальной мощности и силы тока на выходе. Разберем на примере все тех же 4х панелей с характеристиками:• Номинальное напряжение солнечной батареи: 12В.
• Напряжение холостого хода Voc: 22.48В.
• Ток в точке максимальной мощности Imp: 5.42А.
Соединив 2 солнечные панели последовательно и 2 параллельно на выходе мы получим напряжение 24В, напряжение холостого хода 44,96В, а ток при этом будет равен 5,42А*2=10,84А.
Это дает возможность получить сбалансированную систему и сэкономить на таком оборудовании как контроллера заряда аккумулятора, поскольку эму не нужно будет выдерживать большое напряжение в пике работы. Так же схема дает возможность использовать панели разной мощности, например 2 по 12В, преобразовать в 24В. Наиболее удобный вариант сети для дома.
Как подключить солнечную панель к контроллеру заряда
Это оборудование применяется в системе с аккумуляторами для контроля их уровня зарядки. То есть, сбрасывает излишки электроэнергии на них и предотвращает накопление в случаи полного заряда. Так же дает возможность подключения приборов с низким номинальным напряжением – 12В, 24В, 48В и тд. (в зависимости от того как соединены панели).
Подключение производится следующим образом. Контроллер имеет 3 пары контактов на панели (это стандартный вариант, есть варианты с другим количеством клемм, тогда нужно изучать инструкцию производителя к этому оборудованию):- 1 пара контактов – подключается сеть панелей.
- 2 пара – подключаются аккумуляторы.
- 3 пара – подключается источник и низким уровнем потребления.
Сначала рекомендуется подключить аккумуляторные батареи что бы проверить оборудование. Затем сами панели, после уже потребитель, если он предусмотрен в схеме.
Схема подключения, которая была в документации к контроллеру. Все достаточно просто и понятно.
Важно. Необходимо соблюдать полярность всей системы, иначе она не будет работать, возможно выйдет из строя сам контроллер. Если вы будете подключать систему к сети, это особенно важно, иначе замыкание выведет из строя все оборудование.
Видео обзор подключения
Подключение к аккумулятору
Как уже писалось выше, аккумуляторные батареи подключаются к контроллеру, который будет контролировать их заряд. С другой стороны они подключаются к инвертору, который преобразует 12В, 24В, 48В в 220В для использования потребителями. Важно так же соблюдать полярность всей схемы и использовать большее сечение провода, рекомендовано в этой части системы сечение 3 мм. Подключать аккумуляторы можно и напрямую к панелям, без использования контроллера. Однако это делать не желательно по нескольким причинам, самой важной из которых является “перегрев батарей”, то есть избыточная бесконтрольная зарядка, которая снизит их срок эксплуатации.Подключение к инвертору
Данный прибор преобразовывает напряжение, вырабатываемое панелями или отдаваемое аккумуляторными батареями в 220В, после чего его можно использовать в бытовых целях. Есть инверторы, выдающие 380В, однако такие системы в домашних условиях используются крайне редко.Сам процесс подключение достаточно прост, подсоединяем клеммы, обязательно соблюдая полярность, от аккумуляторов или непосредственно от солнечных панелей, если у вас система без контроллера и АКБ.
Схема подключения солнечных панелей в существующую электросеть такая же, но обязательно нужен гибридный инвертор. Работать он будет по следующему принципу: когда энергии от панелей или аккумуляторов достаточно для потребителя, он будет использовать ее, когда же не достаточно, выросла нагрузка или снизилась выработка, он будет использовать энергию с сети. Так же есть и другие варианты настройки такого оборудования, которые позволят эффективно использовать различные источники электроэнергии. Или настроить зарядку АКБ от сети в случаи нехватки солнечной энергии, например если у вас ночной тариф и ночью электроэнергия дешевле.
Как рассчитать мощность инвертора. Для начала необходимо выяснить напряжение и общую мощность собранной вами системы панелей:
- Напряжение может быть 12В, 24В и 48В, как правило больше не бывает, и завист оно от собранной вами схемы панелей.
- Общая мощность рассчитывается от количества панелей и мощности каждой из них. Пример, у вас 10 шт батарей по 280Вт, суммарно это 2.8кВт. Нужен незначительный запас, то есть инвертор берем минимум на 3кВт, если планируете увеличивать объем панелей в будущем, можно сразу взять более мощное оборудование.
Больше про это оборудование, а так же сложные схемы его подключения вы можете найти здесь https://vremya-stroiki.net/invertor-dlya-solnechnyx-batarej-kak-pravilno-vybrat/.
Полезное видео про инверторы
Схема подключения солнечных панелей к аккумулятору, контроллеру и инвертору
Как соединить солнечные панели?
Схема подключения солнечных батарей для подготовленного человека не представляет заметной сложности, но для неопытных пользователей необходимы некоторые разъяснения. Необходимо знать, как производится соединение солнечных панелей между собой, как выполняется подключение солнечных батарей к остальным приборам, входящим в состав комплекта. Существуют разные варианты соединения, которые используются для получения определенных параметров выходного тока и напряжения.
Схема подключения солнечных батарей загородного дома представляет собой систему соединения всех компонентов, которые, в свою очередь, так же соединяются друг с другом определенным образом. Например, необходимо знать, как соединить солнечные панели — параллельно или последовательно. Кроме того, надо выбрать тот или иной способ соединения в батарею аккумуляторов.
Схема устройства солнечной электростанции
Перед тем, как подключить солнечную батарею, необходимо выяснить ее конфигурацию. В состав солнечной электростанции, помимо солнечных модулей, входит комплект оборудования, включающий следующие приборы и устройства:
- контроллер заряда
- аккумуляторные батареи (АКБ)
- инвертор
- коммутационные приспособления, предохранители
Контроллер выполняет диспетчерские функции, переключая систему либо в режим заряда АКБ, либо на подачу питания потребителей. Аккумуляторы получают заряд и накапливают его, отдавая энергию по мере необходимости. Если напряжение батарей достигло 14 В, контроллер прекратит процесс, иначе от перезаряда АКБ выйдут из строя. Инвертор — прибор, преобразующий постоянный ток в переменный и повышающий напряжение до стандартных значений.
Как правило, весь комплект используется в полном составе. Однако, существуют и другие, упрощенные варианты комплектации. В отдельных случаях потребители, питающиеся от постоянного тока, подключают напрямую к модулям. Это возможно только в дневное время, поэтому встречается лишь у специализированных устройств.
Также есть осветительные системы на солнечных батареях, которые не нуждаются в инверторах и работают на прямом питании от аккумуляторов. Иногда из комплекта исключают инвертор, если напряжение нагрузки не превышает 12 В постоянного тока. Этот вариант также встречается не часто и используется по возможности.
Пайка и сборка панелей
Для питания потребителей используют определенное количество модулей, которые соединяются в том или ином порядке. Сначала разрабатывается схема подключения солнечных панелей, которая позволяет получить от них максимальную эффективность.
Параллельно или последовательно?
Обычно одна панель имеет напряжение 12 В и мощность от 1,5 до 4,5 Вт, в зависимости от размера и количества фотоэлектрических элементов.
- Параллельное соединение увеличит силу тока (и мощность), оставляя напряжение неизменным.
- Последовательное соединение солнечных панелей повысит напряжение до 24 В, если соединить 2 модуля. Больше не делают, так как для аккумуляторов есть только 2 допустимых варианта — либо 12, либо 24 В.
Поэтому приходится комбинировать, добиваясь, чтобы схема подключения солнечной батареи к аккумулятору давала наиболее удачный результат.
Контактный отсек
Кроме того, надо иметь четкое представление, как соединить солнечные батареи между собой. Все модули оснащены специальным контактным отсеком, размещенным на задней стороне. Он устроен очень просто — два резьбовых зажима, отмеченные знаками «+» и «-». Пайка как таковая не требуется, поскольку монтаж производят в сложных условиях, где работа с паяльником не всегда возможна. Однако, если есть возможность сделать контакт более надежным и защитить его от окисления, никаких противопоказаний нет.
Тип провода
Для соединения обычно используют одножильный медный провод сечением 4 мм2. Важно, чтобы его изоляция была устойчива к воздействию ультрафиолета. Если этого нет, производят укладку проводов в защитный гофрированный рукав.
Расположения модулей
Во время соединения следует учитывать способ расположения модулей. Если они развернуты под одинаковым углом к солнцу, то все будут работать в одинаковом режиме. Однако, иногда приходится устанавливать разнонаправленные панели. Это бывает вызвано особенным устройством крыши, или желанием обеспечить более равномерную подачу питания в течение дня.
Важно! Надо учесть, что более освещенный модуль будет выдавать максимальный ток, который частично станет расходоваться на нагрев менее нагруженных плоскостей. Для исключения этого эффекта применяют отсекающие диоды, которые впаивают между пластинами с внутренней стороны.
Этапы подключения панелей к оборудованию СЭС
Подключение солнечных панелей представляет собой поэтапный процесс, который может быть выполнен в разном порядке. Обычно производят соединение модулей между собой, затем собирают комплект оборудования и аккумуляторы, после чего панели подключают к приборам. Это удобный и безопасный вариант, позволяющий проверить правильность соединения всех элементов перед подачей напряжения. Рассмотрим эти этапы внимательнее:
К аккумулятору
Разберемся, как подключить солнечную батарею к аккумулятору.
Внимание! В первую очередь надо уточнить — прямого подключения панелей к АКБ не используют. Неконтролируемый процесс получения энергии опасен для батарей, может вызвать как чрезмерный расход, так и избыточную зарядку. Обе ситуации губительны, поскольку могут окончательно вывести АКБ из строя.
Поэтому между фотоэлектрическими элементами и батареями обязательно устанавливают контроллер, обеспечивающий штатный режим зарядки и отдачи энергии. Кроме того, на выходе контроллера обычно устанавливают инвертор, чтобы иметь возможность преобразования накопленной энергии в стандартное напряжение 220 В 50 Гц. Это наиболее удачная и эффективная схема, которая позволяет батареям отдавать или получать заряд в оптимальном режиме и не превышать свои возможности.
Перед тем, как подключить солнечную панель к аккумулятору, необходимо проверить параметры всех компонентов системы и убедиться в их соответствии. В противном случае результатом может стать потеря одного или нескольких приборов.
Иногда используется упрощенная схема подключения модулей без контроллера. Этот вариант применяется в условиях, когда ток от панелей заведомо не сможет создать перезаряд аккумуляторов. Обычно такой способ применяют:
- в регионах с коротким световым днем
- низким положением солнца над горизонтом
- маломощными солнечными панелями, не способными обеспечить избыточный заряд АКБ
При использовании этого метода необходимо обезопасить комплекс, установив защитный диод. Он ставится как можно ближе к аккумуляторам и защищает их от короткого замыкания. Панелям оно не страшно, но для АКБ это весьма опасно. Кроме того, при расплавлении проводов сможет начаться пожар, что создает опасность для всего дома и людей. Поэтому обеспечить надежную защиту — первоочередная задача владельца, решение которой должно быть выполнено до ввода комплекта в эксплуатацию.
К контроллеру
Второй способ часто используется владельцами частных или загородных домов для создания низковольтной осветительной сети. Они приобретают недорогой контроллер и подключают к нему солнечные панели. Устройство компактное, по размерам соотносимо с книгой средних размеров. Оно оснащено тремя парами контактов на лицевой панели. К первой паре контактов подключают солнечные модули, к другой — присоединяют АКБ, а к третей — освещение или другие низковольтные приборы потребления.
Сначала на первую пару клемм подают напряжение 12 или 24 В от аккумуляторов. Это проверочный этап, он нужен для определения работоспособности контроллера. Если прибор верно определил величину заряда батарей, приступают к подключению.
Важно! Солнечные модули присоединяют ко второй (центральной) паре контактов. Важно не перепутать полярность, иначе система не будет работать.
К третьей паре контактов присоединяют низковольтные светильники или иные приборы потребления, питающиеся от 12 (24) В постоянного тока. Больше ни с чем соединять такой комплект нельзя. Если необходимо обеспечить питанием бытовую технику, надо собирать полнофункциональный комплект оборудования — частную СЭС.
К инвертору
Рассмотрим, как подключить солнечную панель к инвертору.
Он используется только для питания стандартных потребителей, нуждающихся в 220 В переменного тока. Специфика использования прибора такова, что подключать его приходится в последнюю очередь — между блоком АКБ и конечными потребителями энергии.
Сам процесс никакой сложности не составляет. В комплекте с инвертором идут два провода, обычно черного и красного цвета («-» и «+»). На одном конце каждого провода есть специальный штекер, на другом — зажим типа «крокодил» для присоединения к клеммам аккумулятора. Провода согласно цветовой индикации присоединяют к инвертору, затем подключают к аккумулятору.
Как избежать распространенных ошибок?
Основными ошибками, встречающимися при соединении солнечных батарей, являются неправильные соединения и перепутанная полярность. Избежать их можно только одним способом — не спешить, внимательно следить за ходом работ, при возникновении сомнений не лениться проверять и уточнять назначение контактов, или их полярность.
Если используется подключение солнечных батарей к сети, схема усложняется, возникает опасность короткого замыкания или выхода приборов из строя. В таких ситуациях рекомендуется обратиться к специалистам, которые смогут правильно подключить приборы и соединить солнечные модули. Для пользователя будет полезным составить для себя схему соединений и отметить на ней полярность. Это поможет впоследствии повторить сборку и исключить ошибки.
Видео — инструкция: как подключить своими руками
Где дешевле купить солнечные батареи?
Солнечный инвертор — гибридный, сетевой для солнечных панелей, схема и отзывы
Для чего нужен солнечный инвертор?
Сетевой инвертор для солнечных батарей используется в полнофункциональных солнечных комплексах для преобразования постоянного тока в переменный с одновременным повышением напряжения. Рассмотрим подробнее, зачем нужен инвертор для солнечных батарей для 12 вольт.
Панели преобразуют энергию солнечного света в электрический ток, который через контроллер поступает на аккумуляторную батарею. Она накапливает заряд и отдает его по мере надобности, одновременно пополняя недостаток от солнечных модулей. Однако, пользоваться энергией от аккумуляторов могут лишь немногие приборы потребления, поскольку АКБ выдают постоянный ток низкого напряжения — 12, 24 или (редко) 48 В.
Необходим преобразователь напряжения для солнечных батарей, способный эти показатели превратить в стандартные значения, аналогичные сетевым. Эту задачу выполняет инвертор для солнечных панелей, который получает от аккумуляторов 12 (24, 48) В постоянного тока, а отдает потребителям обычные 220 В переменного.
Наиболее распространены обычные конвертеры, мощность которых находится в пределах 250-8000 Вт. Габариты таких приборов зависят от величины нагрузки, поскольку мощность обеспечивается дополнительными узлами в конструкции инвертора.
Особенности устройства:
- КПД (в среднем) — 94 %, максимальное значение доходит до 99 %
- полное отсутствие радиопомех
- стабилизированное выходное напряжение
- низкий коэффициент гармоник
- температура эксплуатации влияет на качество, поэтому необходимо обеспечивать максимально широкий диапазон
- наличие защиты от перегрузок
- потери в режиме холостого хода минимальные
- наличие защиты от воздействия влаги и механических повреждений
Отсутствие инвертора резко ограничивает возможности солнечных батарей. Они могут только заряжать аккумуляторы, обеспечивать питание для низковольтного освещения или иных специфических приборов. Солнечные инверторы для дома позволяют получить максимальную эффективность от панелей, обеспечить питание для любых бытовых технических устройств.
Примечательно, что при соединении трех инверторов в каскад можно получить трехфазное напряжение со стандартными параметрами, способное стать источником для мощных электродвигателей и прочих установок.
Виды инверторов для СЭС
Существует несколько разновидностей сетевых инверторов, отличающихся некоторыми особенностями конструкции и назначением. При сборке комплекса солнечных батарей используются различные варианты, требующие от владельца правильного понимания специфики и особенностей их работы. Прежде всего, инверторы различают по форме выходного сигнала:
- синусоидальные
- прямоугольные
- псевдосинусоидальные
Синусоидальные
Наиболее предпочтительным вариантом конструкции является синусоидальный инвертор солнечных батарей. Он способен выдать наиболее качественную форму сигнала, оптимальную для всех бытовых приборов, технических и электронных устройств.
Прямоугольные
Инверторы с прямоугольным сигналом — самые дешевые, но их рекомендуют применять только для простых осветительных приборов. Многие виды бытовой техники от таких источников не могут работать.
Псевдосинусоидальные
Псевдосинусоидальные приборы — это компромисс между первым и вторым видами, способными работать с любыми устройствами. Однако, для работы с некоторыми чувствительными видами потребителей их лучше не использовать. Кроме того, от псевдосинусоидальных инверторов могут возникать помехи и шумы.
Кроме этого, есть инверторы, предназначенные для работы в разных условиях. Рассмотрим их внимательнее:
Сетевые
Сетевые инверторы используются при одновременном подключении пользователей к централизованной сети электропитания. По первоначальному замыслу, инвертор обеспечивает питание потребителей и переключает их на сетевое потреблении при падении заряда аккумуляторов ниже нормы.
Обычно сетевой энергией пользуются в дневное время, когда аккумуляторы солнечных батарей заряжаются. Ночью происходит переход на автономное питание, до того момента, когда заряд АКБ будет исчерпан. В дневное время возможна отдача энергии в сеть, если заряд батарей полон. Эту функцию также используют, если мощность солнечных батарей значительно превышает потребности дома.
За рубежом существуют такие программы и тарифы, где отданная энергия учитывается и оплачивается владельцу солнечной батареи. В нашей стране таких возможностей пока нет, поэтому сетевые инверторы для солнечных электростанций используются только для питания потребителей и переключения режима подачи энергии.
Этот вид приборов считается наиболее удачным, поскольку работает с перерывами и обладает высокой долговечностью. Его недостаток состоит в необходимости иметь параллельное подключение к централизованному источнику.
Автономные
Автономный солнечный инвертор представляет собой конвертер, преобразующий ток АКБ в переменное стандартное напряжение. Он работает в постоянном режиме, никакой внешней поддержки нет. Устанавливается между блоком АКБ и конечными потребителями электроэнергии. Если инвертор автономного типа выходит из строя, питание бытовых технических устройств прекращается.
Такая схема предполагает высокие нагрузки, поэтому мощность инвертора подбирается с определенным запасом. Кроме того, необходимо обеспечить параметры инвертора, превышающие пусковой ток наиболее мощного потребителя. Это важно, поскольку пиковое значение способно вывести устройство из строя.
Например, холодильник или кондиционер при запуске превышает рабочую мощность в 10 раз, поэтому иметь определенный запас надо обязательно. Перед покупкой следует выполнить подсчет суммарной мощности всех потребителей и учесть пиковые пусковые нагрузки. Кроме того, надо прибавить запас на компенсацию падения выходной мощности со временем.
Гибридные
Гибридные, или многофункциональные инверторы сочетают в своей работе все возможности сетевых и автономных приборов. Они считаются лучшим выбором, но их стоимость часто вынуждает пользователей рассматривать другие варианты.
Солнечный инвертор Sila 3000
Одним из наиболее востребованных устройств считается гибридный солнечный инвертор Sila 3000, отзывы о котором свидетельствуют о высоких эксплуатационных возможностях. Например, при номинале 2,4 кВт, эти инверторы способны кратковременно давать 3 кВт без отрицательных последствий для себя. При возникновении пиковых пусковых нагрузок, гибридные солнечные инверторы Sila 3000 могут выдержать изменение режима работы. Несмотря на то, что они изготовлены в Китае, долговечность и надежность приборов весьма положительно оцениваются пользователями.
Обзор популярных моделей
Рассмотрим несколько моделей инверторов для солнечных батарей, которые считаются наиболее качественными и надежными:
МАП «Энергия»
Продукция российского МАП «Энергия». Предлагается несколько разновидностей одно- и трехфазных приборов с синусоидальным графиком выходного напряжения. Они обладают встроенным зарядным устройством для аккумуляторов. Есть разные варианты мощности от 800 Вт до 20 кВт (выдерживает пиковую кратковременную нагрузку 25 кВт).
Schneider Electric
Компания Schneider Electric, базирующаяся во Франции, выпускает инверторы Conext. Они могут работать в сложных условиях, вплоть до наружного монтажа. В ассортименте модели мощностью 3-20 кВт.
TBS Electronics
Голландская компания TBS Electronics предлагает синусоидальные инверторы Poversine разной мощности — от 175 Вт до 3500 кВт. Они имеют многоступенчатую защиту и способны выдерживать пусковые нагрузки, в десятки раз превышающие номинальные значения
Перечень производителей надежных и качественных инверторов можно продолжать еще долго. Выбор подходящего устройства надо производить, руководствуясь не только именем фирмы, но и другими критериями.
Выбор инвертора
Рассмотрим, как надо выбирать сетевой солнечный инвертор. Оптимальный вариант — приобретение готового комплекса приборов с подобранными параметрами. Выбор отдельного инвертора представляет собой задачу, довольно сложную для неподготовленного человека. Однако, часто приходится покупать прибор под готовый набор солнечных модулей.
Принято руководствоваться следующими показателями:
- согласование входного напряжения и мощности
- способы защиты
- диапазон рабочих температур
- наличие нескольких режимов
- КПД
Выбирая сетевые инверторы для солнечных панелей, необходимо произвести несложный расчет. Мощность всех потребителей складывают, прибавляют некоторый запас для обеспечения пиковых нагрузок.
Необходимо иметь в виду, что многие потребителя в момент запуска создают повышенную пусковую нагрузку. Если мощность инвертора подобрана неправильно, пиковые значения быстро выведут прибор из строя. Кроме этого, надо обращать внимание на допустимые значения температуры, так как инвертор чувствителен к этому показателю.
Подключение инвертора к солнечной батарее
Необходимо приготовить кабель соответствующего сечения, способный выдерживать все возможные нагрузки. Необходимо учитывать, что длина соединительного кабеля между солнечными панелями и инвертором не должна превышать 3 м. Если потребители расположены далеко от модулей, удлиняют высоковольтное плечо — кабель на 220 В. Рассмотрим порядок присоединения прибора к комплекту солнечного оборудования:
Схема
Простейшая схема подключения инвертора — в разрыв между потребителями и аккумуляторами. Этот вариант используется для автономных устройств.
Наиболее сложная схема — для сетевых или гибридных приборов. Параллельно с АКБ подключается сетевое напряжение (на соответствующие контакты), тут же присоединяется нагрузка. Дополнительная пара контактов предназначена для резервируемой системы (резервное освещение, аварийное питание и т. п.). Выбор схемы зависит от назначения и конструкции инвертора, а также наличия подключения к централизованной сети.
Этапы
Процесс соединения приборов никаких сложностей не вызывает. Все контакты поименованы, главная задача — не перепутать их в спешке. Сначала собирают весь комплект — панели, контроллер, АКБ. После этого подключают инвертор и проверяют работоспособность. Обнаруженные ошибки сразу устраняют. Когда появляется полная уверенность в правильности всех соединений, подключают полезную нагрузку — приборы питания. С этого момента солнечные батареи считаются введенными в эксплуатацию.
Видео-инструкция по сборке
Цены и где лучше купить инверторы
Схемы монтажа и способы подключения солнечных батарей
Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?
Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая “зеленую энергию” в электричество, необходимое для питания бытового оборудования.
Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.
Содержание статьи:
Устройство солнечной батареи
Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.
Солнечные панели состоят из комплекта , основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.
Галерея изображений
Фото из
Монтаж солнечной электростанции на крыше
Источник резервного электропитания
Установка солнечных батарей на крыше
Система из монокристаллических солнечных панелей
Аппаратура для работы частной гелиосистемы
Батарея аккумуляторов для солнечных панелей
Контроллер для функционала гелиобатарей
Инвертор в схеме с солнечными батареями
Основными конструктивными элементами системы выступают:
- Солнечная батарея – преобразует солнечный свет в электрическую энергию.
- Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
- Контроллер заряда – следит за напряжением аккумуляторов.
- Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
- Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
- Комплект коннекторов стандарта МС4.
Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.
Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи – контроллер и инвертор, а также подключенные к ним аккумуляторы
В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.
Где лучше установить панели?
Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.
Для установки фотоэлектрических модулей удобно использовать стационарные конструкции, выполненные из металлических профилей, либо же более модернизированные поворотные аналоги
Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:
- на крыше загородного коттеджа;
- на балконе многоквартирного дома;
- на прилегающей к дому территории.
Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.
В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.
Чтобы обеспечить максимальную производительность солнечных батарей, угол наклона устройств рекомендуется менять 2-4 раза в год: 18 апреля, 24 августа, 7 октября и 5 марта
К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.
Галерея изображений
Фото из
Чаще всего комплекс солнечных панелей, объединенных в мини электростанцию, монтируют на крышах домов, гаражей, хозпостроек. Их располагают также на навесах, способных держать вес гелиоустановки
Расположение солнечных панелей на установках, способных двигаться вслед за перемещением солнца, существенно увеличивает КПД системы
Если солнечные батареи нужны лишь для зарядки мобильных устройств и в качестве вспомогательных источников энергии, возможна их установка на фасаде. Желательно выбрать наиболее освещаемую сторону и выбрать оптимальный угол наклона
Неплохой производительностью, хотя и меньшей, чем при расположении на скатах крыши, обладает система, зафиксированная на перила мансарды, террасы, веранды
Самое популярное место для установки солнечных батарей
Расположение на вращающихся подставках
Крепление солнечных батарей на фасаде
Солнечные батареи на ограждении мансарды
При размещении солнечных батарей на прилегающей к дому территории, панели лучше приподнять над поверхностью почвы как минимум на полметра – на случай выпадения большого количества снега. Такое решение правильно и в том плане, что обеспечивает достаточное расстояние для циркуляции воздуха.
Стоит помнить, что даже небольшая тень пагубно влияет на выработку электричества агрегатом. Панели нужно размещать лишь в местах, которые не подвержены даже малейшему затенению.
Некоторые «умельцы» с целью защиты батарей устанавливают сверху панелей дополнительное стекло, но даже при видимой прозрачности стеклянная прослойка способна снизить КПД панелей на 30%
Существует несколько способов фиксации панелей:
- посредством задействования прижимных фиксаторов;
- путем болтового соединения через сквозные отверстия, расположенные в нижней части рамки.
Опорная конструкция должна быть выполнена из корозионностойких материалов. Независимо от способа монтажа в конструкцию панелей нельзя самостоятельно вносить изменения и просверливать дополнительные отверстии.
Задача домовладельца – поддерживать панели в чистом виде. Скопления на экране пыли, снега и птичьего помета как минимум на 10% уменьшает количество электроэнергии, произведенной системой.
Варианты соединения гелиобатарей
Солнечные батареи состоят из нескольких отдельных панелей. Чтобы увеличить выходные параметры системы в виде мощности, напряжения и тока, элементы присоединяют друг к другу, применяя законы физики.
Соединение нескольких панелей между собой можно выполнить, применив одну из трех схем монтажа солнечных батарей:
- параллельная;
- последовательная;
- смешанная.
Параллельная схема предполагает подключение одноименных клемм друг к другу, при котором элементы имеют два общих узла схождения проводников и их разветвления.
При параллельной схеме «плюсы» соединяются с «плюсами», а «минусы» с «минусами», в результате чего выходной ток увеличивается, а напряжение на выходе остается в пределах 12 Вольт
Величина максимально возможного тока на выходе при параллельной схеме прямо пропорциональна . Принципы расчета количества приведены в рекомендуемой нами статье.
Последовательная схема предполагает подключение противоположных полюсов: «плюс» первой панели к «минусу» второй. Оставшийся незадействованный «плюс» второй панели и «минус» первой батареи подключают к расположенному дальше по схеме контроллеру.
Такой вид соединения создает условия для протекания электрического тока, при котором остается единственный путь для передачи энергоносителя от источника к потребителю.
При последовательной схеме подключения напряжение на выходе увеличивается и достигает отметки в 24 Вольт, чего бывает достаточно для запитки портативной техники, светодиодных ламп и некоторых электроприемников
Последовательно-параллельную или смешанную схему чаще всего используют при необходимости соединения нескольких групп батарей. Посредством применения этой схемы на выходе можно увеличить и напряжение и ток.
При последовательно-параллельной схеме подключения напряжение на выходе достигает отметки, характеристики которой наиболее подходят для решения основной массы бытовых задач
Такой вариант выгоден и в том плане, что в случае выхода из строя одного из конструктивных элементов системы, другие связующие цепи продолжают функционировать. Это существенно повышает надежность работы всей системы.
Галерея изображений
Фото из
Соединение ячеек солнечной батареи
Количество панелей в зависимости от потребностей
Последовательное соединение солнечных приборов
Прямое подключение к приборам освещения
Принцип сборки комбинированной схемы построен на том, что устройства внутри каждой группы соединяются параллельно. А подключение всех групп в одну цепь осуществляется последовательно.
Комбинируя разные типы соединений, не составит труда собрать батарею с необходимыми параметрами. Главное – число соединенных элементов должно быть таким, чтобы подводимое к аккумуляторам рабочее напряжение с учетом его падения в зарядной цепи превышало напряжение самих , а нагрузочный ток батареи при этом обеспечивал необходимую величину зарядного тока.
Схема сборки солнечной электросистемы
Подключение солнечных панелей осуществляется посредством задействования встроенных соединительных проводов сечением в 4 мм2. Лучше всего для этой цели подходят одножильные медные провода, изоляционная оплетка которых устойчива к ультрафиолетовому излучению.
В случае использования провода, изоляция которого не устойчива к воздействию УФ-лучей, его наружную прокладку рекомендуется выполнять гофрорукаве.
Конец каждого провода соединен с разъемом стандарта МС4 посредством пайки или обжима, благодаря чему обеспечивается герметичное соединение
Независимо от выбранной схемы перед в обязательном порядке необходимо проверить правильность электромонтажа.
При подключении панелей не рекомендуется превышать технические требования по допустимому току и максимальному напряжению других устройств. Важно придерживаться указанных производителем технических требований контроллера заряда и инвертора.
Стандартная схема сборки самой простой солнечной электростанции выглядит следующим образом.
Схема подключения панелей к аккумулятору, инвертору и контроллеру имеет простое исполнение, а потому особых сложностей в подключении не вызывает
Чтобы избежать поломки , при подключении элементов системы важно соблюдать последовательность.
Монтажные работы выполняют в несколько этапов:
- Аккумулятор подключают к контроллеру, задействуя для этого соответствующие разъемы и не забывая соблюдать полярность.
- К контроллеру через разъемы при соблюдении все той же полярности присоединяют солнечную батарею.
- К разъемам контроллера подключают нагрузку в 12 В.
- Если необходимо преобразовать электрическое напряжение с 12 до 220 В, то в схему включают инвертор. Его подключают только к аккумулятору и ни в коем случае не напрямую к контроллеру.
- К свободному выходу инвертора подключают электроприборы, рассчитанные на напряжение в 220 В.
Выполнив соединение, нужно проверить полярность и измерить напряжение холостого хода панелей. Если показатель отличается от паспортного значения – соединение выполнено неправильно.
Для подключения устройства к системе нет необходимости вскрывать распаечную монтажную коробку – все соединительные разъемы расположены в доступности
На завершающем этапе солнечную батарею необходимо заземлить. Чтобы минимизировать вероятность короткого замыкания, в местах соединения между аккумулятором, инвертором и контроллером устанавливают предохранители.
Энергия солнечных электростанций найдет применение в питании маломощных бытовых приборов и в зарядке аккумуляторов мобильной техники:
Галерея изображений
Фото из
Энергосберегающие светильники в интерьере
Уличное освещение на солнечных батареях
Обеспечение работы ж/к телевизора
Зарядка аккумуляторов мобильных устройств
Желающим соорудить солнечную батарею собственноручно поможет информация, приведенная .
Подключение разнонаправленных элементов
Применяя последовательную схему монтажа солнечных батарей, чтобы не снизить эффективность работы устройств, все панели общей цепи следует размещать под одним углом и на одной плоскости.
Если же панели будут располагаться в различных плоскостях, это может привести к тому, что ближняя или более освещенная станет работать мощнее расположенных чуть дальше.
Это значит, что ближняя панель будет генерировать электричество, часть которого будет отходить для нагрева дальних панелей. И причина кроется в том, что ток течет по пути наименьшего сопротивления. Чтобы минимизировать потери, для каждой панели лучше задействовать отдельный контроллер.
Основные требования при задействовании контроллера – мощность подключаемых панелей свыше 1 кВт и удаленность между батареями на достаточно большое расстояние
Решить вопрос можно и путем установки отсекающих диодов. Их размещают внутри между пластинами. Благодаря этому, выдавая максимальный показатель мощности, пластины не перегреваются.
Немаловажное значение имеет и падение напряжения в соединениях, а также самих проводах низковольтной части системы.
Таблица несоответствия передаваемой мощности сечению провода, красным указывающая параметры, при которых возникает риск сильного пожароопасного нагрева
В качестве примера может служить тот факт, что на метровый отрезок кабеля сечением 4 мм2 при прохождении тока показателем 80А (напряжение 12 В) значения падают на 3,19%, что составляет 30,6 Вт. При задействовании скруток падение напряжения может варьироваться в пределах от 0,1 до 0,3 В.
Совмещение гелиоэнергии и стационарной сети
Планируя использовать электроэнергию от солнца параллельно с обустроенной централизованной стационарной сетью, схему подключения делают несколько иной. И основная причина такого решения в том, что у частного потребителя нет возможности «сбрасывать» оставшуюся энергию.
А это может спровоцировать перепады напряжения длительностью до одной секунды.
При совмещении солнечной электроэнергии со стационарной централизованной сетью руководствуются все тем же правилом: чем больше источников подключается, тем сложнее становится схема
Согласно выше приведенной схеме, напряжение от гелиополя первым делом направляется в сторону АКБ, а уже оттуда и передается на нагрузку.
Проектируя такой вариант монтажа в расчет стоит брать два вида нагрузки:
- не резервируемая – свет в доме, бытовая техника и пр.;
- резервируемая – аварийное освещение, холодильник, электрический котел.
Учитывайте: чем больше емкость аккумулятора, тем больше проработают в автономном режиме резервируемые электроприборы.
Выбирая такой способ генерации энергии в сеть, будьте готовы к тому, что придется оформлять разрешение в местных энергосетях.
Несмотря на то, что вырабатывают напряжение, качество которого порой выше того, что в централизованной сети, местные энергосети не дают добро на то, чтобы электросчетчик вращался в обратную сторону.
По этой причине согласно схеме солнечные инверторы прекращают работу в момент пропадания напряжения в сети. А резервируемая нагрузка начинает «запитываться» от АКБ.
Выводы и полезное видео по теме
Авторы видеоматериала, который предоставлен ниже, делятся личным опытом и разбирают нюансы монтажа гелиопанелей.
Видео #1. Пример сборки и монтажа системы заводского образца:
Видео #2. Как правильно установить панели:
Ничего сложного в процессе соединения нескольких панелей с другими элементами системы нет. Но для начинающего мастера процесс может стать затруднительным. Поэтому при отсутствии опыта в расчетах и навыков монтажа стоит обратиться к специалисту, владеющему необходимыми знаниями.
Хотите рассказать, как собирали собственную солнечную электростанцию для дачи или загородного дома? Возможно, вам известны тонкости процесса, не описанные в статье? Пишите, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы, делитесь мнением и фото по теме статьи.
виды техники для преобразования тока
Гелиосистемы по всему миру развиваются огромными темпами. Международное энергетическое агентство в своем ежегодном докладе отметило, что в 2016 г. количество введенных в действие солнечных электростанций впервые превзошло число угольных.
Сердце системы солнечной энергетики — инвертор для солнечных батарей, задача которого — трансформировать постоянный вид тока в переменный. Мы расскажем, как выбрать оптимальный вариант устройства и как его грамотно установить. С учетом наших рекомендаций вы сможете собрать безупречно действующую мини электростанцию.
Содержание статьи:
Виды инверторов для солнечных панелей
Без инвертора, вырабатываемая гелиосистемой энергия, для бытовых нужд будет совершенно бесполезной. Существует 3 вида инверторов по типу использования:
- автономные;
- сетевые;
- многофункциональные.
Инверторы первого вида имеют обозначение «off grid». Они подсоединены к солнечному модулю, являются частью обособленной фотоэлектрической системы и никак не контактируют с внешней электрической сетью. Их мощность варьирует в пределах 100 – 8000 Вт.
Синхронные или сетевые инверторы функционируют синхронно с централизованной системой электроснабжения. Преобразователи с обозначением «on grid» не только выполняют роль преобразователя, но и корректируют такие параметры сети как амплитудные перепады, показатели частоты и другие.
Галерея изображений
Фото из
Для организации автономной солнечной электростанции требуется комплекс аппаратуры, одной из составляющих в ней является инвертор
Обязанность инвертора заключается в переводе постоянного тока, получаемого солнечной гелиостанцией, в переменный, требующийся для питания бытовых электроприборов
Работу инвертора в схеме систем с солнечными батареями может выполнить обычный частотный преобразователь, который без дела пылиться на антресолях. Однако покупать его специально для устройства мини-электростанции на солнечных панелях бессмысленно, у него больше функций, чем необходимо
Солнечные панели вырабатывают энергию в среднем в 12 и 24 В, максимум в 48 В. Однако для питания большинства бытовых агрегатов нужно 220 В, что и обеспечивает инвертор
Если в конструкции инвертора имеется бесперебойник, то он автоматически будет переключать систему на питание из централизованной сети в пасмурные дни и переводить обратно в солнечные
Без инвертора можно обойтись, если получаемая солнечной батареей энергия, необходима лишь для зарядки мобильных устройств, сварочных аппаратов, уличного освещения на гелиопанелях
Модульный принцип подключения позволяет использовать группу инверторов вместо одного прибора, если есть потребность в поставке тока в 380 В
Наличие трансформатора в схеме инвертора не обязательно. Из-за него повышается цена и усложняется система. Правда если необходим сигнал высокого качества, то лучше купить инверторный аппарат с ним
Комплекс аппаратуры для солнечной электростанции
Оборудование для перевода постоянного тока в переменный
Стандартный преобразователь частот
Гелио-электростанция из двух панелей
Инвертор с блоком-бесперебойником
Эксплуатация солнечной панели без инвертора
Возможность использования группы инверторов
Инверторное устройство с трансформатором
Если во внешней сети наблюдаются неполадки, инвертор автоматически отключается. Такие инверторы накапливают электроэнергию в аккумуляторных батареях.
Если суммарная мощность используемых в доме приборов меньше потенциальных возможностей солнечной электростанции, то излишки выработанной электроэнергии попадают во внешние электрические сети. Если же мощности недостаточно для нормальной работы бытовых приборов, то осуществляется подпитка извне.
Параметры инвертора со стороны переменного напряжения определяют исходя из суммарной потребляемой мощности всех приборов, подключенных к электрической сети потребителя. Со стороны постоянного тока инвертор подбирают исходя из номинальной мощности солнечных панелей
При отсутствии напряжения питание подается от заряженного аккумулятора. В случае когда в систему не включены аккумуляторные батареи, энергия, произведенная солнечной электростанцией, уходит в общую сеть.
Сетевые фотоэлектрические инверторы с большой эффективностью используют энергию, получаемую от солнечных батарей. Они являются гарантией стабильности электроснабжения и отличаются высоким КПД, превышающим 90%
Гибридный или многофункциональный инвертор — оборудование надежное. Он сочетает свойства первых двух преобразователей, обладает большим числом настроек. Это лучший вариант для устройства домашней солнечной станции, но и самый дорогой.
Все существующие солнечные инверторы делят на виды и по напряжению на выходе. В зависимости от этого параметра они бывают синусоидальными и меандровыми. Так как у первого величина выходного напряжения почти такая же, как и у питающей электрической сети, это хороший вариант, когда в доме присутствует высокочувствительная техника.
Постоянное значение напряжения является гарантией безопасности для домашнего электротехнического оборудования. Графически форма сигнала на выходе у такого инвертора синосуидального типа изображается в виде чистой синусоиды.
При работе оборудования лучшая форма меандра — идеальный синус. Особенно это важно для телекоммуникационной аппаратуры, медтехники, высокоточных приборов измерения, поэтому, даже не смотря на высоту цены сложных инверторов, других вариантов в этом случае нет. Сведения о форме выходного сигнала производители указывают в его характеристиках
Меандровые или несинусоидальные преобразователи в отличие от синусоидальных имеют геометрию сигнала на выходе в виде импульсов прямоугольной формы так называемый модифицированный синус. Инверторы, относящиеся к этому типу, нельзя использовать для отдельных видов нагрузки, но для приборов, использующих активную составляющую мощности, они вполне подходят.
Критерии выбора преобразователя
При выборе такого элемента гелиосистемы как инвертор важна не только геометрия сигнала на выходе, но и его мощность. Специалисты советуют укомплектовывать преобразователями, номинальная мощность которых выше суммарной мощности, имеющейся в томе техники, процентов на 25 – 30.
Необходимо также учитывать нагрузку, возникающую при единовременном включении нескольких приборов с большой пусковой мощностью.
Еще одним критерием при выборе инвертора является его КПД, определяющей потери энергии на сопутствующие процессы. В зависимости от модели он имеет разное значение, находящееся в пределах 85-95%. Оптимальный выбор — КПД не ниже 90%.
Инверторы бывают как однофазными, так и трехфазными. Первые отличаются более низкой стоимостью, но выбор их оправдан, когда потребляемая мощность составляет менее 10 кВт. Величина напряжения у них составляет 220В, а частота 50Гц. Трехфазные инверторы имеют диапазон напряжений более широкий — 315, 400, 690В.
Производители качественного оборудования укомплектовывают свои изделия трансформаторами выхода. Существует зависимость между весом инвертора и его техническими характеристиками — если на каждый кг его массы приходится 100 Вт мощности, значит, трансформатор включен в его схему
Разным может быть и количество инверторов в системе. В этом вопросе следует руководствоваться следующими рекомендациями: если мощность солнечных батарей не превышает 5 кВт, то для такой системы достаточно одного инвертора. Для батарей большей мощности может потребоваться 2 и больше инвертора. Оптимально, когда один инвертор приходится на каждые 5 кВт.
Для работы в сети, сочетающей использование стандартной электроэнергии и энергии, поставляемой солнечными батареями, применяются . С особенностями устройства и правилами их выбора ознакомит рекомендуемая нами статья.
Преобразователи могут отличаться друг от друга схемами, геометрией выходного сигнала, другими определяющими величинами. Отдельные преобразователи комплектуют зарядными устройствами. Если выйдет со строя один из инверторов, система не прекратит свою работу.
Особенности подключения инвертора
От правильного подключения солнечного инвертора зависит эффективность работы всей гелиосистемы. Главное, соблюсти правило: кабель, передающий постоянный ток, должен иметь минимально допустимую длину и максимальное сечение.
Если потребитель находится далеко от солнечных элементов, следует удлинять путем наращивания электрокабель, транспортирующий переменный ток 220 В. Протяженность провода между инвертором и солнечной панелью должна варьировать в пределах 3 м и никак не больше.
Лучший вариант, когда инвертор расположен возле . Особо жесткие условия приходится выполнять при подключении инверторов, превосходящих по мощности 0,5 кВт.
Подсоединение проводов должно быть прочным, т.к. недостаточно плотное соединение вызывает искрение, что может стать источником пожара. При монтаже автономного инвертора для обеспечения бесперебойного электроснабжения объекта, цепь постоянного тока должна быть укомплектована .
Лучшим решением при подключении инвертора является применение обвязки гибридного типа как по постоянному, так и переменному току. В основе принципа лежит особый порядок включения преобразователя. Его включает после того, как зарядятся аккумуляторы.
Такое решение увеличивает качество работы оборудования. В регионах, где электроэнергию часто отключают, или в домах, расположенных в районах, где преобладает пасмурная погода, этот вариант работает очень эффективно.
Обзор моделей инверторов
Преобразователи для солнечных панелей выпускают многие производители как отечественные, так и зарубежные. Все оборудование имеет разные характеристики, уровни качества, свой набор функций и технические возможности.
Инверторы от отечественного производителя
Широкий ассортимент этих изделий мощностью 800 – 1200 Вт выпускает российский производитель МАП «Энергия».
Компания производит несколько линеек инверторов:
- Синусоидальные инверторы с формой сигнала в виде чистого синуса — МАП SIN.
- Преобразователи синусоидальные с функцией отбора дополнительного количества энергии от аккумуляторов — МАП HYBRID.
- Трехфазные инверторы — МАП HYBRID 3 фазы.
Инверторы, выпускаемые этой фирмой, могут заряжать аккумуляторы всех типов. Для этого у них имеется большой мощности.
Достижением компании является инвертор рекордной мощности — 20 кВт, выдерживающий наибольшую нагрузку 25 кВт. Эта модель может обеспечить надежным питанием большой жилой дом со множеством техники.
Инверторы МАП «Энергия» применяют не только в частных домохозяйствах, но и во многих отраслях промышленности. Они применяются в медицине, строительстве, на метеостанциях
Преобразователи Conext компании Schneider Electric
Французская компания Schneider Electric выпускает инверторы, обладающие высокими эксплуатационными характеристиками, позволяющими использовать их в условиях разного климата.
Покрытие корпуса, обладающее высокой коррозионной стойкостью, позволяет успешно пройти тестирование соляным туманом. Они предназначены для солнечных батарей, установленных как на крышах частных коттеджей, так и многоквартирных домов.
Производитель проверяет надежность своего оборудования с использованием всевозможных методик и тестов. В конструкции инверторов Conext отсутствуют электрохимические конденсаторы, что является гарантией длительной эксплуатации.
Инверторы Conext, даже при максимальных нагрузках, имеют КПД 97,5%. Отдельные модели укомплектованы распределительным блоком, поэтому отпадает надобность в монтаже наружного электрощитка
Большой ассортимент изделий позволяет выбрать подходящую модель для гелиосистем мощностью 3 – 20 кВт.
Инверторы компании TBS Electronics
Эта голландская компания, присутствующая на рынке с 1996 г., производит как маломощные, так и более мощные синусоидальные преобразователи для солнечных панелей Poversine номинальной мощностью от 175 до 3500 Вт.
На фото модель профессионального инвертора Powersine PS3500-24. Его можно применить для обеспечения беспрерывного питания котлов отопления, насосов, компьютеров, других небольших нагрузок. Он оснащен надежной электроникой, высокопрочным металлическим корпусом
Линейка Powersine характеризуется очень чистой синусоидой на выходе, поэтому применение этих инверторов гарантирует грамотную и длительную эксплуатацию высокочувствительных приборов. Оборудование оснащено защитой от КЗ, температурных скачков, перегрузок. С этими инверторами можно запускать нагрузки до 500В с пусковой силой, превышающей номинальную в десятки раз.
Сетевые инверторы Kostal
Фирма выпускает инновационные высококачественные инверторы мощностью от 1,5 до 20 кВт как одно, так и трехфазные. В конструкцию включен выключатель переменного тока, срабатывающий автоматически, МРР-трекеры, монитор, счетчик S0 и много других опций в базовой комплектации. Все это делает возможным внедрение инвертора в систему «умный дом».
Инверторы Kostal несложны как в эксплуатации, так и в установке. Встроенная панель — информативная и понятная, позволяет мониторить его работу
Благодаря высокому качеству материала корпуса, преобразователь устанавливают и снаружи, и внутри дома. Сборку выполняют в Европе, поэтому качество соответствует Европейским стандартам. Гарантия производителя — 5 лет.
Инверторы ABi-Solar из Тайваня
Эти инверторы, выпущенные в Тайване, на нашем рынке представлены серией автономных преобразователей SL/ SLP, автономно-сетевых гибридных инверторов (НТР), линейкой гибридов НТ.
Автономные преобразователи укомплектованы контроллерами заряда от солнечных батарей. Это оборудование наделено тройным функционалом — работает как инвертор, контроллер, зарядное устройство.
В конструкцию включен жидкокристаллический дисплей, позволяющий контролировать основные параметры гелиосистемы. КПД инверторов SL/ SLP — около 93%. В моделях SLP присутствует пылезащита.
К бюджетному варианту относится инвертор из новой серии ABi-Solar HTP. Работает он только при наличии аккумулятора. Особой популярностью пользуется серия НТ, включающая гибридные инверторы одно и 3-фазные, выделяющиеся отличным качеством сборки.
Преобразователи SL0912 и SL1524 также относятся к бюджетным. Они работают в 2 режимах — бытового бесперебойника и с солнечными батареями. Имеют 2 режима поддержания напряжения: от 180 до 260В и от 100 до 300В.
Второй режим позволяет увеличить время эксплуатации батарей за счет меньшего их использования, но может питать только не очень чувствительное к качеству электричества оборудование.
Инвертор ABi-Solar SL 1012 PWM обладает мощностью 800 В. Ток на выходе имеет немодифицированную синусоиду. Может применяться для реализации, произведенной солнечными панелями электрической энергии по «зеленому» тарифу
Инверторы ABi-Solar дают возможность увеличить рабочий диапазон температур и автоматизировать процесс заряд-разряд.
Сетевые инверторы компании GoodWE
Эта китайская компания выпускает инверторы сетевые разной мощности и поставляет их на рынок по невысокой цене. К инвертору прилагается специальная программа, позволяющая выполнить расчет гелиосистемы с учетом расположения солнечных панелей по отношению к сторонам света и другим ориентирам.
Существует возможность вести наблюдение за работой преобразователя через планшет или смартфон, но предварительно придется установить специально предназначенное для этого приложение на базе операционной системы Android.
Выводы и полезное видео по теме
Здесь менеджер продающей компании рассказывает о принципах выбора инвертора:
В этом видео освещен вопрос подключения инвертора:
Фотоэлектрический сетевой инвертор, как неотъемлемая часть гелиосистемы, позволяет получить полную независимость от централизованного электроснабжения и роста цен на электроносители.
«Умные системы», включающие сетевой преобразователь, делают доступным, надежным и управляемым процесс потребления энергии. При этом никак не нарушается комфорт в доме.
Хотите рассказать, как собрали собственную мини-электростанцию с инвертором для гелиобатарей? Владеете ценной информацией по теме, которая может быть полезна посетителям сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, публикуйте фото и задавайте вопросы.
Солнечная электростанция на дом 200 м2 своими руками / Хабр
Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.
Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.
С чего начать?
На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.
Типы солнечных электростанций
Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.
Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.
Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.
Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.
Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.
Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.
Что такое солнечный контроллер?
Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.
Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.
Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.
Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.
Как выбрать солнечные панели?
На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.
Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.
Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.
Мой выбор солнечной электростанции
Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.
Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
- Солнечная батарея TopRay Solar 280 Вт Моно – 9 шт
- Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
- Аккумулятор AGM Парус HML-12-100 – 4 шт
Дополнительно, мне было предложено приобрести профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить. Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.
Что даёт солнечная электростанция?
Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.
Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.
Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.
Начинаю собирать
Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.
Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыкание\размыкание цепи для обслуживания.
Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.
Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.
Эксплуатация гибридной солнечной электростанции
После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.
Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.
Но есть в наличии дома солнечной электростанции и нюансы:
- Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
- При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
- Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.
Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.
Заключение
Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.
Как подключить солнечную батарею
Подключение солнечных панелей. Схема подключения солнечных батарей.
Солнечные батареи могут обеспечить электроэнергией в условиях, когда нет возможности подключения с сети электропитания.
В этой статье мы рассмотрим, как правильно подключить солнечную панель для питания бытовых электроприборов.
Как подключить солнечную батарею.
Самая простая схема подключения солнечной батареи состоит из элементов:
- Солнечной панели.
- Контроллера заряда аккумулятора.
- Аккумулятора.
- Инвертора.
- Соединительных проводов.
Солнечные батареи.
При покупке солнечной панели следует знать, что солнечные панели бывают двух видов:
- Поликристаллические.
- Монокристаллические.
В чём же их отличие? Панели отличаются между собой по технологии производства так называемых солнечных элементов, из которых, и состоит солнечная панель.
У поликристаллической панели активная поверхность синего цвета, а у монокристаллической панели черного, с характерными углами.
Какая панель лучше?
Поликристалл однозначно лучше, так как он работает эффективнее при пасмурной погоде и слабом солнечном свете. Монокристаллические панели имеют меньшую площадь при одинаковых мощностях с поликристаллической панелью, поэтому в пасмурную погоду монокристаллические панели работают менее эффективно.
Наиболее чаще применяются 12 вольтовые панели, которые удобней адаптировать с 12 вольтовыми аккумуляторами. Обычно под значением 12V панель подразумевается 17V — 18V, это нужно для того чтобы когда панель в пасмурную погоду производит меньшее энергии она смогла компенсировать падение напряжения.
Солнечные панели при изготовлении уже имеют подключённые диоды Шоттки, которые защищают солнечные элементы от выхода из строя в момент, когда панель перестаёт генерировать электроэнергию и становится сама потребителем электроэнергии от аккумулятора. Именно диод препятствует обратному протеканию электрического тока.
Контроллер заряда.
Контроллер заряда аккумулятора управляет процессом заряда и препятствует чрезмерному заряду и разряду аккумуляторной батареи.
Принцип работы контролера следующий. Когда панель генерирует электрический ток, аккумулятор заряжается. Когда напряжение на клеммах 12 V аккумулятора достигнет предельного значения 14 V, контроллер отключает зарядку.
Когда солнечная батарея не работает в ночное время, система работает от аккумулятора. Когда напряжение на клеммах аккумулятора достигнет нижней границы 11V, контроллер отключит его от системы, тем самым предотвратит его полный разряд. К контроллеру можно подключить потребителей постоянного тока 12V через соответствующие клеммы (обозначены рисунком лампочкой), например светодиоды для освещения помещения.
Аккумуляторная батарея.
В системе аккумуляторная батарея выполняет функцию аккумулятора электроэнергии, который подзаряжает солнечная панель. Для подключения в систему можно использовать любые свинцово-кислотные аккумуляторы, а также гелевые. В жилом помещении лучше использовать аккумуляторы закрытого типа. Обычно используются 12V автомобильные аккумуляторы.
Инвертор.
Инвертор — он же преобразователь напряжения, подключается к аккумулятору и получает на входе постоянное напряжение, обычно 12V, на выходе из инвертора мы уже получаем переменное напряжение синус 50гц, 220V, к которому можно подключать бытовые приборы, работающие от сети переменного тока 220V.
Кабель.
При монтаже стационарных солнечных панелей производители рекомендуют использовать специальный кабель, для подключения солнечных батарей, который имеет повышенную защиту изоляции от ультрафиолетовых лучей. Можно использовать обычный медный кабель с дополнительной защитой из гофры. Это касается только кабеля который идёт от панели к контроллеру, на всех остальных участках используется обычный медный кабель.
Схема подключения солнечных батарей.
Все комплектующие нужно подключать в строгой последовательности.
Сначала нужно с помощью медного кабеля подключить аккумулятор к контроллеру плюс – плюс, минус – минус. На контроллере есть нарисованный значок аккумулятора.
Затем подключаем солнечную батарею к контроллеру плюс – плюс, минус – минус. На контролере также нарисован значок солнечной батареи возле соответствующих контактов для подключения. Если нужно установить несколько панелей, то их подключают параллельно.
Следующий шаг – подключение инвертора к аккумулятору плюс – плюс, минус – минус.
При несоблюдении полярности при подключении контроллер может выйти из строя.
Схема работы солнечной батареи.
Солнечные панели монтируются на открытых не затенённых участках с направлением на юг, под углом 45° к горизонту. Можно установить панель на автоматическое поворотное устройство, которое постепенно поворачивается по направлению к солнцу в течение дня.
Солнечная батарея под воздействием солнечных лучей, вырабатывает напряжение, которое поступает на контроллер. В свою очередь контроллер даёт зарядку на аккумулятор, который подключён к инвертору.
На инвертор поступает постоянный ток, например 12V, на выходе инвертора мы получаем переменный ток 220V, на выход инвертора подключаются потребители электроэнергии – ноутбук, телевизор и пр.
Даже небольшая солнечная электростанция может обеспечить работу таких бытовых приборов как ноутбук, телевизор, зарядные устройства для телефонов, осветительных ламп, и прочих бытовых приборов с низкой мощностью.
Соединение солнечных панелей вместе для увеличения мощности
Соединение солнечных панелей вместе для увеличения мощности Статья Учебники по альтернативной энергии 25.03.2013 21.08.2020 Учебники по альтернативной энергииПоделитесь / добавьте в закладки с:
Как соединить солнечные панели вместе
Соединение солнечных панелей вместе — простой и эффективный способ увеличения ваших возможностей солнечной энергии. Экологичность — отличная идея, и поскольку солнце является нашим основным источником энергии, имеет смысл использовать эту энергию для питания наших домов.Поскольку солнечная энергия становится все более доступной, все больше и больше домовладельцев покупают фотоэлектрические солнечные панели.Однако эти фотоэлектрические солнечные панели могут быть очень дорогими, поэтому их покупка со временем помогает распределить стоимость. Но тогда проблема заключается в том, как соединить эти дополнительные солнечные панели вместе, чтобы увеличить напряжение и выходную мощность того, что уже есть.
Уловка здесь при соединении солнечных панелей между собой заключается в выборе метода подключения, который даст вам наиболее энергоэффективную конфигурацию для ваших конкретных требований.Соединение солнечных панелей вместе может показаться сложной задачей, когда вы впервые начинаете думать о том, как это должно быть сделано, но соединить несколько солнечных панелей вместе не так уж сложно, если немного подумать. Соединение солнечных панелей вместе в параллельных или последовательных комбинациях для создания более крупных массивов часто упускается из виду, но является совершенно важной частью любой хорошо спроектированной солнечной энергетической системы.
Существует три основных, но очень разных способа соединения солнечных панелей вместе, и каждый метод подключения разработан для определенной цели.Например, для получения большего выходного напряжения или большего тока. Панели солнечных батарей могут быть электрически соединены друг с другом последовательно для увеличения выходного напряжения, или они могут быть соединены вместе параллельно для увеличения выходной силы тока. Солнечные фотоэлектрические панели также могут быть соединены вместе как в последовательной, так и в параллельной комбинациях, чтобы увеличить как выходное напряжение, так и ток, чтобы получить массив более высокой мощности.
Независимо от того, подключаете ли вы две или более солнечных панелей, если вы понимаете основные принципы того, как соединение нескольких солнечных панелей вместе увеличивает мощность и как работает каждый из этих способов подключения, вы можете легко решить, как соединить свои собственные панели вместе.В конце концов, правильное соединение солнечных панелей может значительно повысить эффективность вашей солнечной системы.
Подключение солнечных панелей в серии
Первый метод, который мы рассмотрим для соединения солнечных панелей, известен как «Проводка серии ». Последовательное соединение солнечных панелей используется для увеличения общего напряжения системы. Последовательные солнечные панели обычно используются, когда у вас есть подключенный к сети инвертор или контроллер заряда, который требует 24 В или более.Чтобы последовательно соединить панели вместе, вы подключаете положительную клемму к отрицательной клемме каждой панели, пока не останется одно положительное и отрицательное соединение.
Панели солнечных батарей, соединенные последовательно, складывают или суммируют напряжения, производимые каждой отдельной панелью, давая общее выходное напряжение массива, как показано.
Панели солнечных батарей с одинаковыми характеристиками
В этом методе ВСЕ солнечные панели одного типа и номинальной мощности. Общее выходное напряжение становится суммой выходных напряжений каждой панели.Используя те же три панели на 6 В, 3,0 А, как указано выше, мы можем видеть, что, когда они соединены последовательно, массив выдает 18 В (6 + 6 + 6) при 3,0 А или 54 Вт (В x А).
Теперь давайте посмотрим на подключение солнечных панелей последовательно с разными номинальными напряжениями, но с одинаковыми номинальными токами.
Панели солнечных батарей разного напряжения
В этом методе все солнечные панели имеют разные типы и номинальную мощность, но имеют общий номинальный ток.Когда они соединены последовательно, массив выдает 21 вольт при 3,0 ампера, или 63 ватта. Снова сила тока остается той же 3,0 А, но выходное напряжение подскакивает до 21 В (5 + 7 + 9).
Наконец, давайте посмотрим на последовательное соединение солнечных панелей с совершенно разными номинальными напряжениями и разными номинальными токами.
Панели солнечных батарей с различными токами
В этом методе все солнечные панели бывают разных типов и мощности.Напряжения отдельных панелей будут складываться, как и раньше, но на этот раз сила тока будет ограничена значением самой низкой панели в последовательной цепочке, в данном случае 1 ампер. Тогда массив будет выдавать 19 вольт (3 + 7 + 9) только при 1,0 ампер, или только 19 ватт из возможных 69 ватт, что снижает эффективность массивов.
Мы видим, что солнечная панель, рассчитанная на 9 вольт, 5 ампер, будет использовать только одну пятую или 20% своего максимального потенциала тока, что снижает ее эффективность и тратит деньги на покупку этой солнечной панели.Последовательное соединение солнечных панелей с разными номинальными токами следует использовать только временно, поскольку солнечная панель с наименьшим номинальным током определяет текущий выходной ток всей группы.
Параллельное подключение солнечных батарей
Следующий метод соединения солнечных панелей, который мы рассмотрим, известен как « Parallel Wiring ». Параллельное соединение солнечных панелей используется для увеличения общего тока системы и является обратным последовательному соединению.Путем параллельного подключения панелей вы соединяете все положительные клеммы вместе (положительный с положительным) и все отрицательные клеммы вместе (отрицательный с отрицательным) до тех пор, пока у вас не останется одно положительное и отрицательное соединение для подключения к регулятору и батареям.
Когда вы соединяете солнечные панели параллельно, общее выходное напряжение остается таким же, как и для одиночной панели, но выходной ток становится суммой выходных сигналов каждой панели, как показано.
Параллельные солнечные панели с одинаковыми характеристиками
В этом методе ВСЕ солнечные панели одного типа и номинальной мощности.При использовании тех же трех панелей на 6 В, 3,0 А, как указано выше, общий выход панелей при параллельном соединении, выходное напряжение останется прежним — 6 В, но сила тока увеличится до 9,0 А (3 + 3 + 3) или 54 Вт.
Но что, если наши недавно приобретенные солнечные панели не идентичны, как это повлияет на другие панели. Мы видели, что токи складываются, так что реальной проблемы здесь нет, пока напряжение на панели одинаково, а выходное напряжение остается постоянным.Давайте посмотрим на параллельное подключение солнечных панелей с разными номинальными напряжениями и токами.
Панели солнечных батарей, подключенные параллельно с разными напряжениями и токами
Здесь параллельные токи складываются, как и раньше, но напряжение регулируется до самого низкого значения, в данном случае 3 вольт. Солнечные панели должны иметь одинаковое выходное напряжение, чтобы их можно было использовать параллельно. Если одна панель имеет более высокое напряжение, она будет подавать ток нагрузки до такой степени, что ее выходное напряжение упадет до напряжения панели с более низким напряжением.
Мы видим, что солнечная панель, рассчитанная на 9 вольт, 5 ампер, будет работать только при максимальном напряжении 3 вольта, поскольку на ее работу влияет меньшая панель, снижая ее эффективность и тратя деньги на покупку этой более высокой мощности. солнечная панель. Параллельное подключение солнечных панелей с разными номинальными напряжениями не рекомендуется, поскольку солнечная панель с самым низким номинальным напряжением определяет выходное напряжение всего массива.
Затем при параллельном соединении солнечных панелей важно, чтобы ВСЕ они имели одинаковое номинальное значение напряжения, но не обязательно, чтобы они имели одинаковое значение в амперах.
Соединение солнечных панелей вместе для образования больших массивов не так уж и сложно. Сколько последовательных или параллельных рядов панелей вы собираете на каждый массив, зависит от того, какое напряжение и ток вы хотите получить. Если вы разрабатываете систему зарядки аккумулятора на 12 В, то параллельная проводка идеально подойдет. Если вы ищете систему, подключенную к сети с более высоким напряжением, то, вероятно, вы захотите использовать последовательную или последовательно-параллельную комбинацию в зависимости от количества солнечных панелей, которые у вас есть.
Но для простой справки о том, как соединить солнечные панели вместе в параллельной или последовательной конфигурации проводки, просто помните, что параллельная проводка = больше ампер, а последовательная проводка = большее напряжение, и с правильным типом и комбинацией солнечных панелей вы может питать практически любое электрическое устройство, которое может быть у вас дома.
Для получения дополнительной информации о Соединение панелей солнечных батарей вместе в последовательной или параллельной комбинации, или для получения дополнительной информации о различных типах доступных солнечных панелей, или для изучения преимуществ и недостатков использования солнечной энергии в вашем доме, нажмите здесь чтобы заказать копию на Amazon сегодня и узнать больше о проектировании, подключении и установке автономных фотоэлектрических солнечных электрических систем в вашем доме.
Некоторые высококачественные солнечные панели, которые могут вас заинтересовать, которые можно соединять вместе и использовать в солнечных батареях.
.Сколько солнечных панелей, батарей и инвертора мне нужно для дома?
Полный проект установки солнечных панелей и расчеты с решенными примерами — пошаговая процедура
Ниже приведено полное примечание по конструкции солнечной панели , расчет количества солнечных панелей, номинал батарей / время резервного питания, номинальные параметры инвертора / ИБП, нагрузка и требуемая мощность в ваттах. со схемой, электрическими схемами и решенными примерами. Любой, кто выполнит описанный ниже шаг, сможет установить и подключить солнечные панели дома .
Если вы выберете эту статью, связанную с установкой солнечных батарей, Вы сможете;
- Для расчета количества солнечных панелей (с рейтингом)
- Для расчета рейтинга солнечной панели
- Для расчета рейтинга батарей для системы солнечных панелей
- Для расчета времени поддержки батарей
- Для расчета требуемый и зарядный ток для аккумуляторов
- Для расчета времени зарядки аккумуляторов
- Для расчета номинала контроллера заряда
- Сколько ватт солнечной панели нам нужно?
- Подключить солнечные панели последовательно или параллельно?
- Как выбрать подходящую солнечную панель для дома
- Рейтинг ИБП / инвертора для требований нагрузки и многого другого…
Установка солнечной панели: пошаговая процедура с расчетами и примерами
Перед тем, как мы Для начала рекомендуется прочитать статью о правильном выборе и различных типах солнечных панелей и фотоэлектрических панелей для домашнего и коммерческого использования.По сути, мы расскажем, как подключить и установить систему солнечных батарей в соответствии с надлежащими расчетами и требованиями к нагрузке.
Теперь приступим,
Предположим, мы собираемся установить солнечную систему питания в нашем доме с общей нагрузкой 800 Вт, при этом необходимое время резервного питания от батареи составляет 3 часа (вы можете использовать ее самостоятельно, как только для примера расчета)
Нагрузка = 800 Вт
Требуемое время автономной работы для батарей = 3 часа
Что нам нужно знать?
- Рейтинг инвертора / ИБП =?
- Кол-во батарей для резервного питания =?
- Время автономной работы от батарей =?
- Последовательное или параллельное соединение батарей =?
- Ток зарядки для аккумуляторов =?
- Время зарядки аккумуляторов =?
- Требуемый номер солнечной панели =?
- Последовательное или параллельное соединение солнечных панелей =?
- Рейтинг контроллера заряда =?
Решение:
Рейтинг инвертора / ИБП:
Рейтинг инвертора / ИБП должен превышать 25% от общей нагрузки (для будущей нагрузки, а также с учетом потерь)
800 x (25/100) = 200 Вт
Наша нагрузка + 25% дополнительной мощности = 800 + 200 = 1000 Вт
Это номинальная мощность ИБП (инвертора) i.е. Нам нужен ИБП / инвертор мощностью 1000 Вт для установки солнечных панелей в соответствии с нашими потребностями (на основе расчетов)
Связанное сообщение: Как подключить автоматический ИБП / инвертор к домашней системе электроснабжения?
Требуемое количество батарей
Теперь необходимое время поддержки батарей в часах = 3 часа
Предположим, мы собираемся установить батарей 100 Ач, 12 В ,
12 В x 100 Ач = 1200 Втч
Теперь для одной батареи (т.е. время автономной работы одной батареи)
1200 Вт · ч / 800 Вт = 1.5 часов
Но необходимое время резервного копирования составляет 3 часа.
Следовательно, 3 / 1,5 = 2 → т.е. нам нужно будет подключить две (2) батареи по 100 Ач, 12 В.
Время автономной работы от батарей
Если указано количество батарей, и вы хотите узнать время автономной работы для этих батарей, то используйте эту формулу для расчета часов работы от батарей.
1200 Втч x 2 батареи = 2400 Втч
2400 Втч / 800 Вт = 3 часа.
В первом сценарии мы будем использовать инверторную систему на 12 В, поэтому нам придется подключить две (2) батареи (каждая на 12 В, 100 Ач) параллельно. Но вопрос, поднятый ниже:
Последовательное или параллельное соединение для аккумуляторов
Почему аккумуляторы подключены параллельно, а не последовательно?
Поскольку это инверторная система на 12 В, поэтому, если мы подключим эти батареи последовательно, а не параллельно, то номинал батарей станет V 1 + V 2 = 12 В + 12 В = 24 В, а номинальный ток будет то же я.е.100Ач.
Полезно знать : В последовательных цепях ток одинаков в каждом проводе или участке, а напряжение разное, т.е. напряжение складывается, например V 1 + V 2 + V 3 … .Vn.
Поэтому мы будем подключать аккумуляторы параллельно, потому что напряжение аккумуляторов (12 В) останется прежним, а их номинал в Ач (ампер-час) будет увеличен. т.е. система станет = 12 В и 100 Ач + 100 Ач = 200 Ач.
Полезно знать : При параллельном подключении напряжение будет одинаковым на каждом проводе или участке, а ток будет другим i.ток является аддитивным, например I 1 + I 2 + I 3 … + В
Теперь мы подключим 2 батареи параллельно (каждая по 100 Ач, 12 В)
, т.е. 2 батареи 12 В, 100 Ач будут подключены в Параллельный
= 12 В, 100 Ач + 100 Ач = 12 В, 200 Ач (параллельный)
Полезно знать : Мощность в ваттах является аддитивной в любой конфигурации резистивной цепи: P Всего = P 1 + P 2 + П 3 .. . P n (без учета 40% потерь при установке)
Ток зарядки для аккумуляторов
Теперь Требуемый ток зарядки для этих двух аккумуляторов .
(Зарядный ток должен составлять 1/10 от аккумулятора Ач)
200 Ач x (1/10) = 20A
Время зарядки, необходимое для аккумулятора
Вот формула времени зарядки свинцово-кислотного аккумулятора .
Время зарядки аккумулятора = Аккумулятор Ач / Ток зарядки
T = Ач / А
Например, для одной батареи 12 В, 100 Ач, время зарядки будет:
T = Ач / А = 100 Ач / 10 А = 10 часов (идеальный случай)
из-за некоторых потерь (было замечено, что 40% потерь произошло во время зарядки аккумулятора), таким образом, мы берем зарядный ток 10-12 А вместо 10 А, таким образом Время зарядки, необходимое для батареи 12 В, 100 Ач, будет:
100 Ач x (40/100) = 40 (100 Ач x 40% потерь)
номинал батареи будет 100 Ач + 40 Ач = 140 Ач (100 Ач + потери)
Теперь требуемый ток зарядки для батареи будет:
140 Ач / 12 А = 11.6 часов.
Требуемое количество солнечных панелей (последовательных или параллельных)?
Теперь необходимое количество солнечных панелей, которые нам нужны для вышеуказанной системы, как показано ниже.
Сценарий 1: нагрузка постоянного тока не подключена = только зарядка батареи
Нам известна известная формула мощности (постоянный ток)
P = VI ………… (мощность = напряжение x ток)
Ввод значений батарей и зарядный ток.
P = 12 В x 20 A
P = 240 Вт
это требуемая мощность солнечной панели (только для зарядки аккумулятора, а затем аккумулятор будет подавать питание на нагрузку i.е. прямая нагрузка не подключена к солнечным панелям)
Сейчас
240Вт / 60Вт = 4 шт. солнечных панелей
Таким образом, мы подключим 4 солнечные панели (каждая по 60Вт, 12В, 5А) параллельно.
рис: Принципиальная схема для вышеуказанного расчета для установки солнечной панели (солнечные панели только для зарядки аккумулятора)Вышеупомянутые расчеты и система были предназначены только для зарядки аккумулятора (а затем аккумулятор будет подавать питание на желаемую нагрузку) для электрических приборов переменного тока , который будет получать питание через инвертор и нагрузки постоянного тока через контроллер заряда (через заряженные батареи)
Сценарий 2: нагрузка постоянного тока подключена, а также зарядка батареи
Теперь предположим, что к панелям напрямую подключена нагрузка 10 А через инвертор (или может быть нагрузка постоянного тока через контроллер заряда).Во время солнечного света солнечная панель обеспечивает 10 А для напрямую подключенной нагрузки + 20 А для зарядки аккумулятора, то есть солнечные панели заряжают аккумулятор, а также обеспечивают 10 А для нагрузки.
В данном случае общий требуемый ток (20 А для зарядки аккумуляторов и 10 А для напрямую подключенной нагрузки)
В приведенном выше случае общий требуемый ток в Амперах,
20 А + 10 А = 30 А
Сейчас , I = 30 A, тогда требуемая мощность
P = V x I = 12 В x 30 A = 360 Вт
I.е. нам нужна система мощностью 360 Вт для описанной выше системы (это как для прямой нагрузки, так и для зарядки аккумуляторов)
Теперь необходимое количество солнечных панелей
360/60 Вт = 6 шт. солнечных панелей
Поэтому мы будет подключать 6 № солнечных панелей параллельно (каждая по 60 Вт, 12 В, 5 А)
Щелкните изображение, чтобы увеличить
рис: Схема для вышеуказанного расчета для установки солнечной панели (солнечные панели только для зарядки аккумулятора + Прямое подключение нагрузки).Связанные сообщения:
Рейтинг контроллера заряда
Как мы рассчитали выше, зарядный ток для 200 Ач батареи составляет 20-22 А (22 А для зарядки аккумулятора + 10 А для прямой нагрузки постоянного тока), поэтому мы можем использовать заряд контроллер около 30-32 ампер.
Примечание: приведенный выше расчет основан на идеальном случае, поэтому рекомендуется всегда выбирать солнечную панель немного больше, чем нам нужно, потому что при зарядке аккумулятора через солнечную панель возникают некоторые потери, а также солнечный свет нет. всегда в идеальном настроении.
Связанное сообщение: Как найти подходящий размер кабеля и провода для установки электропроводки?
Сколько ватт солнечной панели нам нужно?
В предыдущем посте мы показали очень простой метод, чтобы узнать, сколько ватт солнечной панели нам нужно для наших бытовых электроприборов? зависит от времени солнечного сияния и нагрузки в ваттах, необходимой нам для включения электроприбора.
Какую солнечную панель мы выбираем?
Среди множества марок и материалов солнечных панелей, таких как c-Si, String Ribon, тонкопленочные солнечные элементы (TFSC) или (TFPV), аморфный кремний (a-Si или a-Si: H), теллурид кадмия (CdTe ) Солнечные элементы, солнечные элементы из селенида меди, индия и галлия (CIGS / CIS), BIPV: создание интегрированных фотоэлектрических панелей, гибридных солнечных элементов и фотоэлектрических панелей. Мы очень подробно обсудили в посте «различные типы солнечных панелей с преимуществами / преимуществами, стоимостью. , и приложения »Таким образом, вы сможете найти лучший тип солнечной панели для домашнего использования?
Похожие сообщения:
.Солнечный инвертор | Solar.com
Солнечная энергия не обеспечивает электричество в том формате, от которого могла бы питаться ваша настольная лампа. Инверторы превращают мощность, производимую вашими солнечными панелями, в то, что вы действительно можете использовать.
Думайте об этом как об обмене валюты на вашу силу. У вас может быть пригоршня иены, но пока вы не остановитесь и не обменяете ее на доллары США, вы не сможете заплатить за обед в Штатах.
Ваш дом подключен к сети переменного тока.Электроэнергия, производимая солнечными панелями, изначально представляет собой постоянный ток (DC). Инверторы преобразуют исходную мощность постоянного тока в мощность переменного тока, чтобы ваша лампа могла использовать ее для освещения комнаты.
Инверторы — невероятно важные части оборудования в солнечной системе на крыше. Доступны три варианта: струнные инверторы, микроинверторы и оптимизаторы мощности.
Типы солнечных инверторов, плюсы и минусы
Инверторы струн
Струнные инверторыимеют один централизованный инвертор, или, если использовать метафору, одну центральную станцию обмена валюты.
Это стандартный инвертор, и он отлично работает, если у вас нет тени от ближайших деревьев или большого дымохода. Также замечательно, если все ваши солнечные панели направлены в одну сторону.
ИнверторыString являются стандартными в отрасли и наименее дорогими.
Плюсов:
- Самая низкая стоимость
- Стандартный инвертор
- Хорошо работает без тени
Минусы:
- Общий объем производства снижается, если одна панель повреждена или затемнена
- Нет возможности контролировать каждую панель по отдельности
- Не оптимально, если ваши солнечные панели обращены в разные стороны
- Увеличить потребность в энергии сложнее, и может потребоваться установка второго центрального инвертора
Микроинверторы
Микро-инверторыимеют небольшой блок для преобразования энергии под ним или встроенный в каждую отдельную солнечную панель.Думайте об этом как о наличии мини-пунктов обмена валюты на каждом углу улицы.
Это дает каждой панели возможность работать с максимальной производительностью, независимо от своих соседей. Даже если на панели рядом с ней есть ветка дерева, которая затеняет ее большую часть дня, все остальные панели могут преобразовываться на полную мощность.
Они также позволяют вам контролировать производительность каждой отдельной панели. Это полезно для обнаружения любых проблем с одной панелью, чтобы вы могли отремонтировать ее, прежде чем это снизит производительность всей системы.
Любое снижение эффективности влияет только на одну панель. Они могут быть дороже, чем струнные инверторы, но могут окупиться за счет увеличения мощности вашей системы в целом.
Микроинверторытакже позволяют легко увеличить потребление энергии, если вы этого хотите. Допустим, вы покупаете электромобиль, и вам потребуется больше энергии, чтобы заряжать его каждую ночь. Добавить больше солнечных панелей и инверторов проще и дешевле, чем добавить дополнительный центральный инвертор для струнной инверторной системы.
Подробнее о струнных инверторах и микро-инверторах здесь.
Плюсов:
- Тень от ближайшего дерева не снизит выходную мощность всей системы солнечных батарей
- Возможен индивидуальный контроль панели
- Увеличение потребности в энергии проще и дешевле, чем установка второго центрального инвертора
- Подходит для крыш, где солнечные панели могут смотреть в разные стороны
Минусы:
- Более высокая начальная стоимость
- Не требуется, если все панели обращены одинаково и не закрашены.
Оптимизаторы мощности
Это что-то среднее между струнными инверторами и микроинверторами как по принципу действия, так и по цене.
Как и в случае с микро-инверторами, у оптимизаторов мощности есть компонент («оптимизатор») под каждой солнечной панелью и внутри нее. Но вместо того, чтобы прямо на месте изменять постоянный ток на переменный, эти инверторы оптимизируют ток перед его отправкой на один центральный инвертор. Это более эффективно, чем струнный инвертор, поскольку любое вялое производство с одной панели не замедляет работу всей системы, но более рентабельно, чем стандартная установка с микроинвертором.
Представьте, что вы можете оказаться впереди очереди в обменном пункте.Это не так быстро и удобно, как иметь собственный обменный пункт в нескольких шагах от дома, но когда вы доберетесь до центрального офиса, вам не придется ждать.
Микроинверторы и оптимизаторы мощности набирают популярность, и цены падают по мере развития технологий.
Подробнее об оптимизаторах мощности читайте в этом посте.
Плюсов:
- Более эффективен, чем струнные инверторы
- Дешевле, чем микроинверторы
- Возможен индивидуальный контроль панели
Минусы:
- Более высокая начальная стоимость
- Не требуется, если все панели обращены одинаково и не закрашены.
В конечном счете, лучший инвертор для вас зависит от формы и размера вашей крыши, ближайших деревьев, количества энергии, которое вам нужно, и вашего бюджета.
На что обращать внимание при использовании солнечного инвертора
Напомним, что существует три типа инверторов: струнные инверторы, микроинверторы и оптимизаторы мощности. Все они преобразуют энергию, вырабатываемую вашими солнечными панелями, из постоянного (DC) в переменный (AC). Это делает энергию полезной для вашего дома.
Вот несколько вещей, на которые следует обратить внимание при покупке инверторов…
Гарантия на солнечный инвертор
Большинство людей чувствуют себя более комфортно, покупая электронные устройства с гарантией.Солнечные инверторы — не исключение. На большинство инверторов предоставляется гарантия от 5 до 10 лет, хотя на некоторые из них можно продлить гарантию до 25 лет.
Когда вы смотрите на компанию, убедитесь, что вы знаете, что входит в гарантию, а что нет. Например, некоторые оптимизаторы мощности могут не включать центральный инвертор в гарантию.
Также убедитесь, что вы понимаете условия гарантии. Накрывается ли устройство на случай внутреннего сбоя, а также на случай внешнего повреждения? Будете ли вы платить за работу или доставку, если вам придется отправлять детали? Это все важные вопросы, которые нужно задать.
Рабочие температуры солнечного инвертора
Как и большинство электронного оборудования, инверторы работают лучше всего, когда они холодные. Рабочая температура — это самый безопасный диапазон температур, который поддерживает инвертор.
Инверторы, естественно, сами выделяют тепло при выполнении своей работы. Поскольку они, как правило, находятся на открытом воздухе в неконтролируемой среде, они подвергаются широкому диапазону температурных колебаний.
Очевидно, что условия не всегда идеальны, и иногда инвертору придется работать больше, чем другим.Чем выше рабочая температура (чем больше тепла он выдерживает), тем лучше.
КПД солнечного инвертора
В эффективности солнечного инвертора нужно искать два показателя: пиковая эффективность и взвешенная эффективность.
Пиковая эффективность дает вам эффективность вашего инвертора, когда он работает оптимально. Хорошо знать, каков наилучший сценарий, но также стоит отметить, что он не всегда будет соответствовать этому уровню. В некоторые дни он может достигать максимальной эффективности всего за час или два, а может и вовсе не работать.
Взвешенные показатели эффективности в таких переменных, как уровни входного постоянного тока. Это дает более точные показания, поскольку солнечный свет, температура и другие факторы окружающей среды влияют на эффективность инвертора в течение дня.
Солнечный инвертор: основные термины, которые необходимо знать
- Ограничение / Скальпирование — это термин, используемый для описания выходной энергии, которая теряется из-за недостаточного размера инвертора. Любой инвертор имеет максимальную номинальную мощность (на жилом уровне, измеряется в Вт или кВт).Когда солнечная энергия подает постоянный ток, превышающий максимальную номинальную мощность этого инвертора (с которой инвертор может справиться), результирующая мощность «ограничивается». Важно учитывать максимальную выходную мощность солнечных панелей и выбирать инвертор правильного размера, модели и типа, чтобы избежать чрезмерного ограничения. Размер системы постоянного тока может быть примерно в 1,2 раза больше, чем максимальная номинальная мощность переменного тока инверторной системы. Например, солнечная фотоэлектрическая батарея мощностью 12 кВт, соединенная с инвертором 10 кВт, имеет отношение постоянного тока к переменному току, или «коэффициент нагрузки инвертора», равный 1.2. Если принять во внимание реальные, специфические для объекта условия, которые влияют на выходную мощность, может иметь смысл размер солнечной батареи немного больше, чем максимальная номинальная мощность инвертора, поскольку может быть очень мало «дней ограничения мощности». , »Или экземпляры отсечения для этой системы.
- Эффективность инвертора — Процент, который говорит нам, сколько мощности постоянного тока, потребляемой инвертором, получается как полезная мощность переменного тока. Ни один инвертор не является эффективным на 100%, хотя некоторые из них подходят близко в благоприятных условиях.При преобразовании постоянного тока в переменный ток теряется в виде тепла. Хотя эффективность инвертора является важным фактором, который следует учитывать в процессе выбора, необходимо учитывать и другие факторы, которые также влияют на экономику проекта, такие как гарантия, цена, ожидаемый срок службы, удобство обслуживания и функции мониторинга.
- Максимальная мощность — это максимальная мощность, разрешенная для подачи на инвертор, которая зависит от технических характеристик инвертора или максимальной мощности, которую может производить солнечная панель.Это произойдет при оптимальном соотношении напряжения и тока на кривой I-V (ток и напряжение) данной панели.
- Максимальная точка мощности (MPP) — Выходная мощность солнечной системы будет зависеть от условий, таких как количество получаемого солнечного света, температура и другие факторы. Неподвижная, стационарная, устанавливаемая на крыше или на земле солнечная фотоэлектрическая система может производить свою максимальную номинальную мощность только в течение ограниченного периода дня. Каждый конкретный солнечный элемент имеет свою собственную уникальную кривую ВАХ, которая связывает его максимальную выходную мощность с изменениями тока (I) и напряжения (V).
- Трекер максимальной мощности (MPPT) — Устройство, которое периодически отслеживает характеристики данной панели, ряда панелей или системы, а также оптимизирует и соответственно изменяет напряжение и силу тока для получения максимальной мощности.
- Микро-инвертор — Устройство, преобразующее постоянный ток (DC), вырабатываемый одной солнечной панелью, в переменный ток (AC). Микроинверторы обычно подключаются и устанавливаются на месте или позади каждой отдельной солнечной панели в массиве.Большинство производителей микро-инверторов устанавливаются в полевых условиях, а некоторые из них поставляются производителем со встроенной панелью. К популярным маркам микроинверторов относятся: Enphase, Chilicon, APS, ABB, SMA и SunPower.
- Оптимизатор — преобразователь постоянного тока в постоянный, оптимизатор или «оптимизатор панели» — это силовое электронное устройство на уровне модуля, которое увеличивает выходную мощность солнечной системы путем постоянного измерения MPPT каждой отдельной панели. Оптимизаторы панели передают рабочие характеристики через систему мониторинга для облегчения операций и любого необходимого обслуживания.По сути, оптимизаторы поддерживают гибкие конструкции и устройства систем — с несколькими ориентациями панелей, наклонами, азимутами и типами модулей в заданной строке. Поскольку оптимизаторы представляют собой технологию DC-DC или DC-связанную, системы, использующие эту технологию, как правило, будут совместимы с решениями для хранения энергии или резервного питания с DC-связью, такими как Tesla Powerwall. Возможно, наиболее выгодным преимуществом использования оптимизатора постоянного тока является MPPT на уровне панели или отслеживание точки максимальной мощности. Результатом является повышенный сбор энергии от панельной системы, особенно при периодическом или сильном затенении.
- Точка максимальной мощности — Другой термин для точки максимальной мощности (MPP).
- String Inverter — Устройство, которое преобразует электричество постоянного тока (DC), вырабатываемое группами солнечных панелей (называемых цепочками), в электричество переменного тока (AC), пригодного для использования. Струнные инверторы считаются «зрелой» солнечной технологией, которая доказала свою эффективность, безопасность и надежность. На бытовые инверторы 240 В переменного тока обычно дается гарантия производителя на срок около 10 лет.При установке в соответствии со спецификациями, правилами и передовыми методами производителя строковый инвертор может потребовать обслуживания или, в конечном итоге, замены в течение всего срока службы фотоэлектрической системы. Проконсультируйтесь с Pick My Solar, чтобы узнать, на что распространяется гарантия качества изготовления вашей солнечной системы, а также гарантия производителя инвертора. В зависимости от целей, бюджета и предпочтений струнные инверторы могут стать отличным вариантом для вашей солнечной фотоэлектрической системы.
Как установить базовую систему солнечных панелей
Введение
В этом разделе рассказывается, как правильно настроить базовую систему. Мы обязательно включим в эту установку инвертор, аккумулятор, контроллер заряда, панель и проводку.
Настройка системы
Примечание. При настройке системы панели не должны находиться под прямыми солнечными лучами или закрыты по соображениям безопасности. .
Сначала необходимо подключить аккумулятор к контроллеру заряда.Вы можете использовать наш кабель-лоток или любой обычный многожильный медный провод для их соединения. Убедитесь, что вы ввели провод в клемму аккумулятора контроллера заряда и совместили + и — с + и — аккумуляторами. Обязательно плотно вкрутите оголенный провод внутри клеммы контроллера. Затем прикрутите батарейные кольца к батарее. См. Модель 2.8.1.
Модель 2.8.1
Во-вторых, подключите солнечную панель к контроллеру заряда.Мы рекомендуем вам сначала подключить комплект адаптера к панели, а затем следовать знаку + или — на выводах панелей и совместить его со знаками + и — на контроллере заряда. См. Модель 2.8.2.
Будьте осторожны на этом этапе, потому что, если панель вставлена неправильно, вы можете изменить полярность и закоротить систему, что приведет к повреждению панелей или контроллеров
Модель 2.8.2
Наконец, вы можете подключить инвертор к батарее, используя кольцевые кабели батареи и сопоставив + с + и — с -.
Дополнительные инструкции по установке см. В модели 2.8.3
Модель 2.8.3
Ссылки на видео
Ссылка на литературу:
https://www.renogy.com/template/files/Picture-Manual.pdf
https://www.renogy.com/template/files/Off-grid-General-Manual.pdf
.