Поликристаллические и монокристаллические солнечные модули: Сравнение монокристаллических и поликристаллических солнечных батарей


0
Categories : Разное

Содержание

Сравнение монокристаллических и поликристаллических солнечных батарей

Итак, какая солнечная батарея лучше — монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?

На фото ниже представлены два основных типа:


Монокристаллический элемент
 
Поликристаллический элемент

Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие — это эффективность преобразования солнечной энергии. Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие — это цена солнечной батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

  • Внешний вид.
  • Эффективность.
  • Цена.

Как видно из этого перечня, для солнечной электростанции не имеет никакого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:

  1. поликристаллические — 52,9%
  2. монокристаллические — 33,2%
  3. аморфные и пр. — 13,9%

Т.е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.

 

Надеемся, приведенные выше советы помогут Вам сделать выбор!

Поликристаллические и монокристаллические солнечные батареи и их отличия

На протяжении длительного времени люди пытались понять, как можно использовать энергию Солнца себе во благо. Многие ученые, в том числе и известный физик Альберт Эйнштейн, занимались изучением этого вопроса.

История создания

В средине XIX века был открыт фотоэлектрический эффект. Это процесс преобразования солнечной энергии в электрический ток. Эта находка стала настоящим прорывом, повлекшим за собой создание солнечных батарей в XX столетии. Первые солнечные панели были разработаны на основе кремния, и до сих пор данный материал является основой для производства лучших фотомодулей.

Разновидности

Современные солнечные батареи делятся на кристаллические, с использованием моно- и поли- кристаллов кремния, и тонкопленочные, изготавливаемые из диселенида индия и меди, теллурида кадмия, а также аморфного кремния. Первый вид более популярный и востребованный среди потребителей. Говоря о его разновидностях, нужно сказать, что на сегодняшний день существуют поликристаллические и монокристаллические солнечные батареи.

Основные отличия между этими видами следующие:

 1. Цена

Монокристаллические солнечные батареи стоят дороже, чем поликристаллические, для солнечных электростанций с одинаковыми характеристиками.

2. Эффективность

Поликристаллические солнечные батареи имеют КПД 15,5%-18%, а у монокристаллических этот показатель составляет от 18,5 до 23,5%. Также, следует отметить, что КПД экспериментальных аналогов монопанелей составляет около 43,6%. Кроме того, как мы уже упоминали, существуют тонкопленочные элементы из аморфного кремния, но их коэффициент полезного действия равен всего 9-11%.

При этом производительность монокристаллических панелей на 15-20% выше, чем у поликристаллических образцов. Если взять период в 10 лет, монокристаллические солнечные панели произведут на 35-40% больше электроэнергии за счёт более низкого уровня деградации кремния, а также более высоких характеристик работы при низком уровне солнечной инсоляции.

3. Размер

Поскольку монокристаллические панели более эффективны, их физический размер меньше, чем у поликристаллических аналогов такой же мощности. Если вы ограничены по площади и хотите получить максимально возможный КПД, лучше использовать монокристаллические панели.

4. Внешний вид

С точки зрения внешнего вида, монокристаллические панели имеют приятный однородный цвет и имеют более округлую форму. Поликристаллические клетки размещаются квадратами и имеют несоответствия в цветовой гамме, подобной граниту.

5. Срок службы

Несмотря на то, что монокристаллическая батарея может прослужить до 50 лет, большинство производителей солнечных батарей заявляют гарантийный срок на линейную производительность до 25 лет. Это, в свою очередь, уравнивает в глазах потребителей моно- и поли- кристаллические панели.

6. Особенности производства

Наверняка многие знают, что приставка «моно» означает – один, а «поли» – множество, то есть более чем один. Разница между поликристаллическими и монокристаллическими солнечными панелями начинается ещё в процессе производства.

Монокристаллические солнечные батареи изготавливаются из чистого кремния. Для этого используется кварцевый песок. Монокристаллический кремний создается путем медленного вытягивания монокристаллического затравочного кристалла кремния из расплавленного монокристаллического кремния с использованием метода Чохральского для образования слитка кремния. Затравочный кристалл представляет собой небольшой кусочек кремния, который используется в качестве основы для расплавленных молекул. Имея основу, расплавленные молекулы способны быстрее соединяться друг с другом, образуя слиток. Пока затравочный кристалл извлекается, он медленно вращается, и температура постепенно опускается. Это помогает сформировать цилиндрическую форму, пока она не будет иметь необходимый диаметр. После затвердевания кристалл разрезают на тонкие пластины. Поскольку такой процесс достаточно трудоемкий и затратный, на такие панели устанавливается более высокая цена.

Поликристаллические солнечные панели производятся по менее дорогостоящей технологии и более простым способом. Вместо того, чтобы проходить через медленный и более дорогой процесс создания монокристалла, расплавленный кремний помещается в отливку и охлаждается затравочным кристаллом. Поликристалл имеет неоднородную структуру, поскольку после осаждения молекулы застывают в свободной ориентации.

Предпочтения потребителей

Сегодня каждый человек имеет возможность приобрести поликристаллические и монокристаллические солнечные батареи. Основные отличия, как уже было сказано, состоят в цене продукции и ее продуктивности. Поскольку поликристаллические панели более доступные, их используют чаще. По статистике, 90% частных солнечных электростанций в мире применяют именно поликристаллические солнечные батареи. Выбирая нужный товар, люди также ориентируются на такое обстоятельство, как количество солнечных дней в своей местности. Чем их меньше, тем выгоднее приобретать батареи с монокристаллическим преобразователем.

Поскольку солнечные батареи пользуются спросом у населения, многие компании занимаются поставками этого товара. Выбирая необходимые изделия, следует ознакомиться с ассортиментом многолетних лидеров в этой отрасли. Ведущие производители поликристаллических и монокристаллических солнечных батарей: Jinko Solar, Trina Solar, Yingli Solar, Canadian Solar, Ja Solar, Hanwha Q CELLS. Эти предприятия являются самыми крупными создателями и поставщиками солнечных панелей в мире. Среди их продукции вы обязательно подберете тот товар, который удовлетворит все ваши требования.

Что лучше поли или монокристаллические солнечные батареи?

 

С появлением новейших разработок в области науки и техники, ассортимент солнечных модулей постепенно расширяется. Но неизменную популярность среди пользователей, как и прежде, занимают солнечные батареи из монокристаллического и поликристаллического кремния.

Монокристаллические солнечные батареи

Изготовление солнечных батарей на базе монокристаллического кремния позволяет получать наиболее высокие показатели эффективности фотоэлектрического преобразования среди модулей коммерческого применения за счёт максимально возможной чистоты исходного материала (монокристаллического кремния).

КПД монокристаллических солнечных элементов (из которых производятся такие модули) достигает показателей до 19-22%; КПД монокристаллических солнечных батарей, соответственно, – 16-18%.

За счёт более качественного исходного материала, монокристаллические солнечные батареи имеют лучшие показатели по работе при низких уровнях освещённости (в условиях облачности). Что очень важно для электрогенерации в осенне-зимний период, особенно при применении солнечных батарей в Украине. Помимо этого, монокристаллические элементы более эффективно работают в морозную погоду, поэтому  использовать монокристаллические солнечные батареи в зимний период более практично.

В случае, если целью является получение максимальной генерации с единицы площади, следует использовать только монокристаллические модули.

 

Монокристаллический и поликристаллический солнечные модули

 

Поликристаллические солнечные батареи

Основное преимущество поликристаллических солнечных батарей – они дешевле, так как себестоимость исходного материала (мультикристаллических пластин) ниже, но и эффективность работы таких модулей ниже. Их использование целесообразно если нет задачи получения максимальной выработки электроэнергии с единицы установленной мощности. Если в вашей местности нету значительных перепадов уровней освещенности в течении длительного периода.

Внешний вид

Сырьем для производства монокристаллических элементов солнечных батарей является монокристалл кремния, полученный путем выращивания в специальных ростовых вакуумных печах. Чистота такого изделия равна 99,999%, от сюда и значительно высший КПД по сравнению с поликристаллическими элементами. Кристалл кремния в печи растет в форме цилиндра, если его порезать на пластины – мы получим круги).

Растущий в печи кристалл кремния имеет цилиндрическую форму

 

Если далее из таких круглых пластин сделать солнечные элементы и собрав их в готовую солнечную панель, у нас будет очень много неэффективной площади панели. Но если же из круглой пластины вырезать квадрат, получится много отходов производства. Поэтому принята стандартная форма монокристаллических солнечных элементов, так называемый

псевдоквадрат. Это лучшее решение по оптимизации полезной площади монокристаллической солнечной панели и уменьшении производственных отходов.

Монокристаллический солнечный элемент формы псевдоквадрат

 

Производство  элементов (ячеек) для поликристаллических солнечных батарей технологически на много проще, в следствии сами элементы значительно дешевле. Чаще всего, емкость – тигель с расплавленным кремнием, чистота которого намного ниже чем при производстве монокристаллических элементов, плавно охлаждают до полного остывания. Полученный слиток кроят на пластины нужной формы. Внешне элемент для поликристаллической солнечной панели легко отличить от монокристаллического благодаря визуально неоднородной структуре.

Поликристаллический солнечный элемент имеет неоднородную структуру

 

Эффект старения

С каждым годом эксплуатации любых солнечных батарей их производительность немного уменьшается, можно сказать что происходит “старение”. И для монокристаллических солнечных батарей этот эффект значительно ниже, это связано с их равномерной структурой.

К примеру, если монокристаллические элементы стареют за 25 лет на 17 – 20%, то для монокристаллических элементов этот показатель может превысить все 30%.

 

Сравнение по эффективности работы

Начиная с «бума» массового производства солнечных панелей в начале 2000-х годов, ведутся споры, какой из вариантов, моно- или мультикремний является более предпочтительным, с точки зрения эффективности использования.

В данной статье мы не будем проводить глубокий теоретический анализ физических процессов, а обратим внимание только на имеющиеся статистические данные.

Наиболее объективной информацией о эффективности работы фотоэлектрических модулей, являются данные об натурных испытаниях, проводимых под эгидой журнала Photon International (модули различных производителей устанавливаются в одинаковых условиях, на каждую группу устанавливается отдельный счётчик вырабатываемой энергии). Место проведения испытаний – Аахен, Германия.

В качестве результирующего параметра для сравнения взят параметр «коэффициент выработки», определяемый как соотношение выработанной энергии к расчётной, которая должна быть полученной  исходя из номинальной мощности модуля, реальных условий окружающей среды (освещённость, температура и т. д.). По результатам 2013 и 2014 года,  были получены следующие значения по лидерам:

 

Компания

Материал подложки

Место 2013 год

Процент 2013

Sopray Energy

Mono

1

94

Risen Energy

Mono

2

93,8

ET Solar Industry

Mono

3

93,4

Hanwha QCells

Multi

4

93,3

Sonalis

Mono

5

93,3

Risen Energy

Mono

6

93,1

CSG PV Tech

Multi

7

93,1

Renesola

quasimono

8

93,1

Sopray Energy

Multi

9

93

CSG PV Tech

Mono

10

93

RealForce Power

Multi

11

92,8

Seraphim Solar System

Multi

12

92,6

Jinko Solar

Mono

13

92,6

Jinko Solar

Multi

14

92,6

Siliken

Multi

15

92,4

ET Solar Industry

Multi

16

92,2

JA Solar

Mono

17

92,1

REC

Multi

18

92,1

CSG PV Tech

Mono

19

92,1

Hareon Solar Technology

Multi

20

92,1

 

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 60%.

 

 

Компания

Материал подложки

Место 2014 год

Процент 2014

Sopray Energy

Mono

1

94,9

Risen Energy

Mono

2

94,7

Sonalis

Mono

3

94,4

Sunpower

mono

4

93,9

Renesola

quasimono

5

93,7

Hanwha QCells

Multi

6

93,6

Huanghe Photovoltaic Technology

Multi

7

93,6

Sunpower

mono

8

93,5

Risen Energy

Mono

9

93,4

ET Solar Industry

Mono

10

93,2

Jinko Solar

Multi

12

92,9

Seraphim Solar System

multi

13

92,6

Hareon Solar Technology

Multi

14

92,4

Sopray Energy

Multi

15

92,4

Phono Solar

Mono

16

92,4

CSG PV Tech

Multi

17

92,4

CSG PV Tech

Mono

18

92,3

Runda PV

multi

19

92,3

Topsolar Green

mono

20

92,3

 

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 70%.

 

Таким образом, образцы, где в качестве базового материала использован монокремний, при проведении данных испытаний продемонстрировали более высокую эффективность по выработке электроэнергии. Покольку результатов по другим объективным сравнительным испытаниям не приводится, мы рекомендуем использование монокристаллических солнечных панелей.

 

  Наше предприятие “Пролог Семикор” производит солнечные модули  только из монокристаллических солнечных элементов. Если вы заинтересованны купить солнечные батареи полностью украинского производства, посетите наш магазин, нажав в меню сайта “Наш магазин”. Так же мы можем предоставить консультацию по внедрению “Зеленого Тарифа” с 10% надбавкой за использования украинских комплектующих.

Поликристаллические и монокристаллические солнечные батареи позволяют установить независимый источник энергообеспечения в домах, а также на предприятиях. На сегодняшний день благодаря солнечным батареям можно:

  1. Обеспечивать автономное и резервное электроснабжение частных домов, офисных зданий, заправочных комплексов, тепличных и фермерских хозяйств, киосков.

  2. Обеспечивать освещение парков, садов, улиц и шоссейных дорог;

  3. Обеспечивать электроэнергией удалённые объекты телекоммуникаций.

  4. Усовершенствовать работу газопроводов и нефтепроводов;

  5. Обеспечить электропитанием системы подачи воды, а также ее опреснения.

  6. Заряжать разнообразные гаджеты (актуально в походах и поездках за город).

Читайте также:

Какие солнечные панели лучше: монокристаллические, поликристаллические или тонкопленочные

Один из важных факторов выбора модулей фотоэлектрической установки — тип фотоэлементов. От него во многом зависит выработка солнечной электростанции и срок ее службы. Наибольшее распространение сейчас получили три разновидности солнечных батарей:

Монокристаллические солнечные панели

Солнечные батареи этого типа в последнее время чаще всего устанавливают на крышах частных домов. Предпочтение им отдают в том числе из-за эстетичного внешнего вида — панели имеют однотонную поверхность матового темно-синего или черного цвета.

Монокристаллический модуль легко отличить по форме отдельных фотоэлектрических элементов: они выглядят как квадрат со срезанными углами. Стандартные панели составляются из 60 или 72 фотоячеек.

Название монокристаллические фотопанели получили от технологии изготовления. Каждая фотоячейка батареи состоит из одного кристалла кремния, сформированного с использованием метода Чохральского. В емкость с расплавом чистого кремния помещают затравочный кристалл этого же вещества. При вытягивании затравки вокруг нее застывает кремний из расплава, образуя большой монокристалл — слиток. После полного охлаждения его разрезают на тонкие пластины, из которых собирается фотоэлемент.

Благодаря тому, что фотоэлектрические элементы состоят из одного кристалла, они обладают высокой проводимостью. Поэтому монокристаллические панели — самый энергоэффективный тип солнечных батарей. Их коэффициент преобразования солнечной энергии обычно равен 17–22%. Максимальная эффективность позволяет добиться большой мощности фотомодуля при его компактных размерах.

Основной недостаток монокристаллических модулей — высокая стоимость, обусловленная сложностью процесса производства. В среднем они дороже поликристаллических фотопанелей на 0,05 доллара США в пересчете на ватт номинальной мощности.

Поликристаллические солнечные панели

Солнечные модули на основе поликристаллов кремния — отличный выбор при ограниченности бюджета. Отдельные фотоячейки не имеют срезанных углов, а их поверхность отличается неоднородным темно-синим цветом, который не всегда гармонично можно сочетать с окружающей обстановкой.

 

Поликристаллические фотоэлементы также изготавливаются из расплава кремния, в который погружается затравка. Но вместо вытягивания монокристалла производится охлаждение всего расплава. В результате формируется большой слиток, состоящий из множества кристаллов кремния, ориентированных в разных направлениях. Получившийся поликристалл также разрезается на пластины, из которых собираются фотопанели на 60 или 72 фотоэлемента.

Читайте также: Солнечные панели бывают разные: синие, зеленые, красные…

По фотоэлектрической ячейке, состоящей из отдельных кристаллов кремния, электронам проходить труднее, чем по монокристаллу. Из-за этого КПД поликристаллических панелей, как правило, составляет 15–17%.

Главное преимущество поликристаллических модулей перед монокристаллическими — более доступная цена. Именно она обеспечила высокую популярность батарей из поликристаллов в 2012–2016 годах.

Тонкопленочные солнечные панели

Тонкопленочные, или аморфные, солнечные батареи — новейшая разработка. Но это не лучший вариант для использования в традиционных домашних фотоэлектростанциях. А вот для изготовления солнечной черепицы или солнечных фасадов – оптимальное решение на сегодняшний день Для таких фотомодулей характерны равномерный темный цвет поверхности без ярко выраженных границ фотоячеек, легкость и зачастую гибкость.

 

Аморфные панели изготавливаются путем нанесения тонкого слоя фотоэлектрического материала на твердое основание. В качестве активного вещества применяются в том числе следующие материалы:

  • аморфный кремний;
  • теллурид кадмия;
  • селенид меди-индия-галлия;
  • диоксид титана.

Аморфные модули дешевле кристаллических и меньше теряют КПД при рассеянном свете и низкой освещенности. В то же время тонкопленочные панели характеризуются низкой эффективностью и более коротким сроком службы, чем кристаллические.

Обычный КПД для большинства серийных моделей лежит в пределах 10–13%. Но технология активно развивается. Всего несколько лет назад энергоэффективность тонкопленочных моделей не превышала 10%, а сейчас создаются экспериментальные фотоячейки с КПД 23,4%.

Тем не менее пока из-за низкой эффективности и недолговечности использование пленочных солнечных панелей в частных домохозяйствах нецелесообразно. Однако благодаря легкости установки и малой стоимости солнечные батареи этого типа находят широкое применение в промышленных фотоэлектрических системах, где экономия занимаемого пространства не играет важной роли.

Какие солнечные батареи выбрать

Для создания домашней фотоэлектрической установки лучше всего подходят монокристаллические и поликристаллические панели. Первые обеспечивают максимальный КПД, вторые дешевле. Впрочем, совершенствование технологий постепенно сближает поликристаллические и монокристаллические модули как по энергоэффективности, так и по стоимости.

Поэтому при выборе солнечных батарей нужно учитывать не только тип фотоэлектрических элементов, но и множество других факторов, в первую очередь конкретные характеристики, их соответствие условиям эксплуатации и качество изготовления фотопанелей. А также важно уделять внимание правильности выполнения монтажа.

Читайте также: Классы Tier солнечных батарей и качество оборудования для домашних СЭС

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

отличие монокристаллических от поликристаллических батарей

Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие — это эффективность преобразования солнечной энергии.Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие — это цена на солнечные батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Четвертое отличие — это срок службы солнечных батарей. Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Испытания показали снижение мощности модулей за 20 лет примерно на 10%. У монокристаллических солнечных батарей срок службы не менее 30 лет, в то время как у поликристаллических не менее 20 лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет. Сами солнечные элементы, используемые в солнечных модулях, имеют практически неограниченный срок службы и показывают отсутствие деградации по прошествии десятков лет эксплуатации. Однако, выработка модулей со временем падает. Это результат 2 основных факторов — постепенное разрушение пленки, используемой для герметизации модуля (обычно используется этиленвинилацетатная пленка — ethylene vinyl acetate; EVA) и разрушение задней поверхности модуля (обычно поливинилфосфатная пленка), а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.


Герметик модуля защищает солнечные элементы и внутренние электрические соединения от воздействия влаги. Так как практически невозможно полностью защитить элементы от влаги, модули на самом деле «дышат», но это крайне трудно заметить. Влага, попавшая внутрь, выводится наружу днем, когда температура модуля возрастает. Солнечный свет постепенно разрушает герметизирующие элементы за счет ультрафиолетового излучения, и они становятся менее эластичными и более податливыми на механические воздействия. Со временем, это приводит к ухудшению защиты модуля от влаги. Влага, попавшая внутрь модуля, ведет к коррозии электрических соединений, увеличению сопротивления в месте коррозии, перегреву и разрушению контакта или к уменьшению выходного напряжения модуля.

Второй фактор, уменьшающий выработку модуля — это постепенное уменьшение прозрачности пленки между стеклом и элементами. Это уменьшение не заметно невооруженным глазом, но ведет к снижению мощности модуля за счет того, что меньше света попадает на солнечные элементы.

Максимальное ухудшение обычно гарантируется производителями на уровне не более 20% за 25 лет. Однако испытания на реально работающих модулях показали, что их выработка за 30 лет уменьшилась не более, чем на 10%. Очень многие из этих модулей и до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

  • Внешний вид.
  • Эффективность и размер.
  • Цена.
  • Срок службы.

Как видно из этого перечня, для солнечной электростанции не имеет ни какого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

Какие солнечные батареи лучше?

Какие солнечные батареи лучше?

Выбирая солнечную батарею в магазине Вам непременно придется столкнуться с выбором какую солнечную панель выбрать монокристаллическую или поликристаллическую?

На этот вопрос нет однозначного ответа. Решать только Вам!

Эта статья поможет Вам разобраться в различиях между монокристаллическими солнечными модулями и поликристаллическими, а также ответит на такие вопросы:

  • Какие бывают разновидности солнечных батарей?
  • Какие солнечные панели лучше?

  • Как выбрать солнечную батарею, модуль?

  • В чем отличие монокристаллических солнечных батарей от поликристаллических солнечных батарей?

  • Какие выбрать солнечные батареи для дома?

  • Что лучше поликристалл или монокристалл?

 

Солнечная батарея — это устройство для преобразования солнечной энергии в электрическую.

Все солнечные батареи содержат в себе солнечные ячейки. Фотогальванические ячейки спаяны вмести и заключены в корпус. Сверху они покрыты стеклом, позволяющим проникать солнечному свету к самим ячейкам, одновременно защищая их от вредных химических и механических воздействий. Солнечные ячейки соединены в модулях в серии для создания необходимого напряжения. Сзади находится крышка из пластика которая защищает электрические детали от влаги и пыли.


 

Сегодня на рынке солнечных батарей представлено несколько различных образцов. Отличаются они друг от друга технологией изготовления и материалами, из которых их производят.

Разновидности солнечных батарей.

Солнечные батареи изготавливают из кристаллического кремния. Это самое распространенное вещество для создания солнечных ячеек. Данный вид кремния разделяется на виды, которые определяются размером кристаллов и методиками изготовления.

Для изготовления монокристаллических солнечных батарей используют максимально чистый кремний, получаемый по методу Чохральского или изготавливаются тигельным методом.

Кремний расплавляется в большом тигле. Затем в него добавляется затравка, являющаяся кремниевым стержнем, вокруг которой начинается процесс нарастания нового кристалла. Затравка и тигель вращаются в разные стороны. В итоге образуется огромный круглый кристалл кремния, его нарезают на пластинки, из которых выполняются ячейки солнечной батареи.

Основным недостатком метода является множество обрезков и специфическая форма солнечных монокристаллических ячеек – квадрат, у которого обрезаны углы.

После затвердевания готовый монокристалл разрезают на тонкие пластины толщиной 250-300 мкм, которые пронизывают сеткой из металлических электродов.

Используемая технология является сравнительно дорогостоящей, поэтому и стоят монокристаллические батареи дороже, чем поликристаллические или аморфные. Выбирают данный вид солнечных батарей за высокий показатель КПД (порядка 17-22%).

Для создания поликристаллических солнечных батарей делают кремниевый расплав и подвергают его медленному охлаждению. В результате чего получается поликристаллический кремний, который представляет собой совокупность из множества разных кристаллов, которые образуют единый модуль. Отсюда и специфический блик на поверхности солнечных батарей, в устройстве которых он содержится, напоминающий металлические хлопья.

Поликристаллический кремний. Этот материал является более простым и дешевым в изготовлении. Такая технология требует меньших энергозатрат, следовательно, и себестоимость кремния, полученного с ее помощью меньше.

Поликристаллические солнечные батареи имеют КПД (12-18%), но заметно выигрывают в стоимости.

Различия.


Температурный коэффициент.

В процессе эксплуатации в реальных условиях солнечный модуль нагревается, в результате чего номинальная мощность солнечного модуля снижается. По результатам исследований установлено, что в результате нагрева,  солнечный модуль теряет от 15 до 25% от своей номинальной мощности. В среднем у моно и поликристаллических солнечных модулей температурный коэффициент составляет -0,45%. То есть при повышении температуры на 1 градус Цельсия от стандартных условия STC, каждый солнечный модуль будет терять мощность согласно коэффициенту. Этот параметр также зависит от качества солнечных элементов и производителя. У некоторых топовых производителей температурный коэффициент модулях ниже -0,43%.

Деградация в период эксплуатации LID (Lighting Induced Degradation).

Монокристаллические солнечные модули имеют немного большую скорость деградации в сравнении с поликристаллическими солнечными модулями в первый год. Мощность качественного поликристаллического модуля в первый год снижается в среднем на 2%, монокристаллического на 3%. В последующие годы монокристаллический модуль деградирует на 0,71%, в то время как поликристаллический деградирует на 0,67% в год. Весьма незначительная разница. Многие китайские компании имеющие дистрибьюторов в России изготавливают солнечные модули из солнечных элементов малоизвестных китайских компаний. Мы знаем случаи с китайскими солнечными модулями, когда LID достигал 20% в первый же год. Поэтому перед покупкой солнечного модуля, уточните производителя солнечных элементов.

Цена.

Стоимость производства поликристаллического солнечного модуля ниже, чем монокристаллического. Весомый аргумент в пользу поликристаллического модуля.

Фото чувствительность.

В России до сих пор живет миф, о том что поликристаллический модуль более эффективно работает в пасмурную погоду. Однако ни одного официального доказательства, что это на самом деле так никто не видел. Этот вопрос больше относится к качеству и фото чувствительности  солнечных элементов. Ниже представлено сравнение моно и поликристаллических модулей CSG PVtech при различной освещенности.

Освещенность (Вт/м2)

200

400

600

800

1000

Коэффициент

Тип модуля

Мощность, Вт

200/

1000

400/

1000

240W Poly

49,896

96,981

146,446

194,785

242,238

0,20598

0,40035

255W Poly

50,336

102,533

154,760

206,205

257,152

0,19574

0,39873

250W Mono

51,773

100,260

151,333

201,336

250,567

0,20662

0,40013

260W Mono

51,878

105,748

159,035

211,609

262,965

0,19728

0,40214

Как видно из результатов теста, моно и поликристаллические модули практически одинаково ведут себя при различном уровне освещенности и имеют одинаковую фоточувствительность, во всяком случае у данного производителя это именно так. Выработку солнечных модулей при различной освещенности Вы можете определить по коэффициенту. У 250 Вт Моно при 200 Вт/м2 и 260 Вт моно при 400 Вт/м2 они наивысшие. Но опять же, разница минимальна.

Итоги и выводы.

Монокристалл — имеет меньшие размеры панелей при одинаковых мощностях (примерно на 5% процентов меньше размер солнечных панелей) из-за более высокого КПД на площадь солнечной клетки.

Поликристалл — имеет больший габаритный размер при такой же номинальной мощности и выигрышную разницу в цене (порядка 10%) в сравнении с монокристаллом.

Важно понимать то, что «Моно» не хуже и не лучше «Поли», они просто разные по способу производства. Основным различием между монокристаллическими солнечными батареями и поликристаллическими  солнечными батареями, при одинаковой номинальной мощности, будет лишь габаритный размер солнечной панели и их стоимость.

Перейти к выбору солнечной батареи

Поликристаллические или монокристаллические? Какие солнечные панели лучше?

Итак, солнечные батареи — это устройства, которые преобразуют солнечную энергию в электричество. На первый взгляд, данный алгоритм достаточно прост. Но он достигается благодаря посредничеству кремния — важнейшего минерала, используемого в фотовольтаике. Данный химический элемент довольно распространен в природе, при этом постоянный технологический прогресс его обработки способствует постоянному снижению цен на солнечные батареи.

Важнейшим преимуществом таких устройств является их экологичность. Отсутствуют вредные излучение, выбросы, отходы. Такие источники энергии, как солнечные батареи, являются достаточно надежными. Безусловно, они имеют и недостаток — это непостоянство. То есть, при пасмурной погоде генерация понижается, а ночью — вообще прекращается.

Разновидности солнечных панелей

При выборе солнечных панелей возникает вопрос — какой тип солнечных панелей эффективнее? Они подразделяются на 2 типа:
1. Монокристаллические.
2. Поликристаллические.

Как уже было отмечено, солнечные батареи производятся из кремния. Основа этого материала — кристаллы. Итак, что такое кристалл? При производстве сначала происходит процесс расплавления кремния. Создается так называемый кремниевый стержень, а вокруг него появляется кристалл. После этого, монокристалл разрезают на нужное количество частей, которые и будут компонентами для солнечной батареи. Данная технология энергозатратная, поэтому и цена монокристаллических солнечных панелей высокая.

Для производства поликристаллических панелей применяется другая технология. При этом частично используются остатки от обработки монокристалла. Такой метод не требует больших затрат, поэтому поликристаллические панели стоят дешевле монокристаллических.

Температурный коэффициент в перечисленных видах солнечных панелей приблизительно одинаков — 0.45%. Исключение могут составлять солнечные панели премиальных брендов Sharp, LG, Hanwha, Longi Solar.

Монокристаллические панели

Монокристаллические панели имеют как плюсы, так и минусы. К преимуществам данного вида панелей относятся:
1. Достаточно высокие показатели работы. Это достигается благодаря высокой степени очистки кремния.
2. Высокий уровень производительности. Он достигает 18-23%. Именно за это преимущество монокристаллические панели пользуются спросом среди пользователей.
3. Солнечные панели от ведущих производителей монокристалла могут обеспечить более высокую производительность в условиях недостаточной освещенности (в утренние и вечерние часы) и при значительной облачности.
4. Компактность. Площадь используется маленькая для размещения батареи. При этом производительность ее работы выше, чем поликристаллической панели.
5. Длительный период эксплуатации. Так, гарантированный срок службы монокристаллической панели составляет от 25 до 30 лет.

Единственным недостатком такого вида батарей является их стоимость. Она значительно выше, чем поликристаллических элементов. Поэтому для установки данного вида панелей надо будет сделать капитальные вложения.

Поликристаллические панели

Поликристаллические солнечные панели имеют самое главное преимущество — это доступная стоимость. Это связано с тем, что при производстве данного вида панелей используется абсолютно незатратный метод.

К недостаткам поликристаллических панелей относятся:
1. Низкий показатель производительности. Он составляет 14-18%. Это является результатом низкого уровня чистоты кремния.
2. Занимают больше пространства. Из-за меньшей мощности, придется устанавливать больше солнечных батарей, чем при использовании монокристаллических элементов.
3. Чувствительность к перепадам температуры. Такие панели имеют определенный порог температурного режима. Когда они его достигают, начинают происходить различные физико-химические реакции. Это, в свою очередь, влияет не общий срок эксплуатации поликристаллических панелей.
Какой солнечной панели отдать предпочтение?

Какая солнечная панель лучше и сколько нужно солнечных батарей для дома — это главные вопросы, которые беспокоят потребителей. Поликристаллических панелей требуется для дома больше, чем монокристаллических. Однако это вовсе не означает, что первый вид панелей хуже другой. Они просто имеют разные способы производства.

Установка солнечных батарей — это достаточно длительный процесс. К нему надо подойти максимально внимательно. Установить однозначно, какие солнечные панели поликристаллические или монокристаллические лучше, практически невозможно.

Монокристаллические панели занимают меньше пространства. Но они дороже. Поликристаллические панели больше размером. Однако по стоимости они значительно дешевле монокристаллических панелей.

Значит, надо учитывать, что при одинаковой номинальной мощности, монокристаллические и поликристаллические панели могут отличаться своими размерами и ценой. Именно от этого Вам нужно отталкиваться, отдавая предпочтение конкретному виду солнечной батареи. Кроме этого, Вам необходимо определиться с:
• целью установки;
• расчетной мощностью;
• условиями, в которых будут эксплуатироваться панели.

Если провести более жизненный пример сравнения, то разницу между видами солнечных панелей можно перевести и различие между дизельными и бензиновыми двигателями. Каждый из данных видов ДВС имеет идентичное назначение — это превращение химической энергии в механическую.

Как бензиновые, так и дизельные двигатели имеют свои преимущества и недостатки. Например, дизельные моторы более тяговитые и экономные, а бензиновые менее затратные в обслуживании. Принципиально понять, что для каждого отдельного случая эксплуатации машин — строительства, перевозки, скоростных гонок выдвигаются определенные требования. Поэтому их нужно выбирать в соответствии с условиями эксплуатации и другими выходными данными.

Абсолютно идентичная ситуация и с подбором солнечных батарей для строительства солнечной электростанции. Чтобы автономная или сетевая СЭС работала продуктивно и надежно, на этапе подготовки необходимо осуществить индивидуальный просчет всего проекта и правильно подобрать комплектующие.

Монокристаллические и поликристаллические панели солнечных батарей

Время чтения: 3 минуты

При оценке солнечных панелей для вашей фотоэлектрической (PV) системы вы столкнетесь с двумя основными категориями вариантов панелей: монокристаллические солнечные панели (моно) и поликристаллические солнечные панели (поли) . Оба типа панелей производят энергию от солнца, но есть некоторые ключевые различия, о которых следует помнить.

Узнайте, сколько будут стоить солнечные панели в вашем районе в 2021 году

Монокристаллические солнечные панели и поликристаллические солнечные панели: все дело в элементах

Как монокристаллические, так и поликристаллические солнечные панели выполняют одну и ту же функцию в общей солнечной фотоэлектрической системе: они поглощают энергию от солнца и превратить его в электричество.Они также оба сделаны из кремния, который используется в солнечных батареях, потому что это очень прочный элемент в большом количестве. Многие производители солнечных панелей производят как монокристаллические, так и поликристаллические панели.

Как монокристаллические, так и поликристаллические солнечные панели могут быть хорошим выбором для вашего дома, но есть ключевые отличия, которые вы должны понимать, прежде чем принимать окончательное решение о покупке солнечной энергии. Основное различие между этими двумя технологиями заключается в типе кремниевых солнечных элементов, которые они используют: монокристаллические солнечные панели имеют солнечные элементы, сделанные из монокристалла кремния, в то время как поликристаллические солнечные панели имеют солнечные элементы, сделанные из множества фрагментов кремния, сплавленных вместе.

Монокристаллические солнечные панели

Монокристаллические солнечные панели обычно считаются солнечным продуктом премиум-класса. Основными преимуществами монокристаллических панелей являются более высокая эффективность и более гладкий внешний вид.

Для изготовления солнечных элементов для монокристаллических солнечных панелей кремний формуют в стержни и разрезают на пластины. Эти типы панелей называются «монокристаллическими», чтобы указать, что используемый кремний является монокристаллическим кремнием. Поскольку ячейка состоит из монокристалла, электроны, генерирующие поток электричества, имеют больше места для движения. В результате монокристаллические панели более эффективны, чем их поликристаллические аналоги.

Поликристаллические солнечные панели

Поликристаллические солнечные панели обычно имеют меньшую эффективность, чем монокристаллические варианты, но их преимущество — более низкая цена. Кроме того, поликристаллические солнечные панели, как правило, имеют синий оттенок вместо черного оттенка монокристаллических панелей.

Поликристаллические солнечные панели также производятся из кремния. Однако вместо того, чтобы использовать монокристалл кремния, производители плавят вместе множество фрагментов кремния, чтобы сформировать пластины для панели.Поликристаллические солнечные панели также называют «поликристаллическим» или многокристаллическим кремнием. Поскольку в каждой ячейке много кристаллов, у электронов меньше свободы передвижения. В результате поликристаллические солнечные панели имеют более низкие показатели эффективности, чем монокристаллические.

Как монокристаллические и поликристаллические панели сравниваются по ключевым показателям?

В конце концов, все дело в показателях. Вот как монокристаллические и поликристаллические солнечные панели сочетаются друг с другом в нескольких ключевых областях:

Моно vs.поли солнечные панели: ключевые показатели
Монокристаллические панели Поликристаллические панели
Стоимость Более дорогие Менее дорогие
Эффективность Более эффективная Менее эффективная
Эстетика Солнечные элементы имеют черный оттенок Солнечные элементы имеют синий оттенок
Срок службы 25+ лет 25+ лет

Монокристаллические vs.поликристаллические солнечные панели: какие подойдут вам?

Экономия денег — одна из лучших причин перейти на солнечную энергию, и независимо от того, выберете ли вы моно или поли солнечные панели, вы уменьшите свои счета за электроэнергию. Выбранный вами вариант зависит от ваших личных предпочтений, ограниченного пространства и выбранного вами варианта финансирования.

Личные предпочтения : Если цвет ваших солнечных панелей важен для вас, помните, что монокристаллические и поликристаллические солнечные панели имеют тенденцию выглядеть на вашей крыше по-разному.Типичная монокристаллическая панель будет иметь более темный черный цвет, в то время как типичная поликристаллическая панель обычно будет иметь более синий цвет. Кроме того, если для вас важно то, где были произведены ваши панели, убедитесь, что вы достаточно знаете о компании, которая сделала ваши моно- или поли солнечные панели.

Ограничение пространства : Вам следует предпочесть солнечные панели с более высокой эффективностью, если размер вашей фотоэлектрической системы ограничен количеством места, доступного на вашей крыше. Из-за этого оплата дополнительных затрат за более эффективные монокристаллические панели, которые могут помочь вам максимизировать производство электроэнергии, будет иметь больше смысла в этих сценариях.В качестве альтернативы, если у вас много места на крыше или вы устанавливаете наземную солнечную батарею, то поликристаллический материал с более низкой эффективностью может быть более экономичным вариантом.

Финансирование солнечной энергии : То, как вы финансируете свою систему, также может сыграть роль в определении того, какой тип панели вы выберете. Например, если вы выбираете соглашение о покупке электроэнергии (PPA), вы платите за киловатт-час электроэнергии, произведенной системой. Это означает, что, помимо любого типа оборудования, которое вам предлагается, ваши ежемесячные платежи будут определять вашу экономию.Напротив, если вы покупаете свою систему, более высокая оплата за высокоэффективные монокристаллические панели может привести к более высокой окупаемости ваших инвестиций в солнечную энергию.

Какие еще существуют технологии солнечных элементов?


Хотя они составляют значительно меньшую долю рынка солнечных панелей (в частности, для жилых и коммерческих панелей), существуют и другие варианты солнечных панелей, помимо монокристаллических и поликристаллических. Одна из технологий, о которой вы, возможно, слышали, — это тонкопленочные солнечные панели, которые включают панели, изготовленные из различных материалов, которые, как правило, более легкие и гибкие, чем обычные кремниевые панели. Однако технология тонких пленок отстает от технологии кристаллического кремния с точки зрения эффективности и производительности.

Начните свое путешествие по солнечной энергии сегодня с EnergySage

EnergySage — это национальный онлайн-рынок солнечной энергии: когда вы регистрируете бесплатную учетную запись, мы соединяем вас с солнечными компаниями в вашем районе, которые конкурируют за ваш бизнес с индивидуальными ценами на солнечную энергию, адаптированными для твои нужды. Ежегодно в EnergySage приходят более 10 миллионов человек, чтобы узнать о солнечной энергии, сделать покупки и инвестировать в нее.Зарегистрируйтесь сегодня, чтобы узнать, сколько солнечной энергии можно сэкономить.

основных солнечных элементов

Узнайте, сколько будут стоить солнечные панели в вашем районе в 2021 году

Монокристаллические и поликристаллические солнечные панели

Моно и поли солнечные элементы: краткие факты

  • Монокристаллические солнечные элементы более эффективны, потому что они разрезаны из одного источника кремния.
  • Поликристаллические солнечные элементы состоят из нескольких источников кремния и немного менее эффективны.
  • Тонкопленочная технология стоит дешевле, чем моно- или поли-панели, но также менее эффективна.Он в основном используется в крупномасштабных коммерческих приложениях.
  • Клетки N-типа более устойчивы к индуцированной светом деградации, чем клетки P-типа.
  • Ячейки PERC добавляют отражающий слой, чтобы дать ячейке вторую возможность поглощать свет.
  • Половинчатые элементы повышают эффективность солнечных элементов за счет использования лент меньшего размера для передачи электрического тока, что снижает сопротивление в цепи.
  • Двусторонние солнечные панели поглощают свет с обеих сторон панели.

Производители солнечных батарей постоянно тестируют новые технологии, чтобы сделать свои солнечные панели более эффективными.

В результате производство солнечных батарей расширилось на широкий спектр технологий ячеек. Пытаться понять, почему вам следует предпочесть один вариант другому, может сбить с толку.

Вы когда-нибудь задумывались о разнице между монокристаллическими и поликристаллическими солнечными панелями? Или клетки N-типа против клеток P-типа? Вы попали в нужное место. В этой статье дается общий обзор основных технологий солнечных батарей и объяснены плюсы и минусы каждой из них.

БЕСПЛАТНОЕ руководство по солнечным панелям

Монокристаллические vs.Поликристаллические и тонкопленочные солнечные панели

Первый набор терминов описывает, как солнечные элементы формируются из сырья.

Традиционные солнечные элементы изготавливаются из кремния, проводящего материала. Производитель формирует из сырых кремниевых пластин кремниевые элементы одинакового размера.

Солнечные элементы могут быть монокристаллическими (вырезанными из одного источника кремния) или поликристаллическими (из нескольких источников). Давайте посмотрим на различия между двумя вариантами.

Монокристаллические солнечные панели

Монокристаллические солнечные панели содержат элементы, вырезанные из цельного слитка кристаллического кремния. Состав этих ячеек более чистый, потому что каждая ячейка сделана из цельного куска кремния.

В результате монопанели немного более эффективны, чем поли-панели. Они также лучше работают в условиях высокой температуры и низкой освещенности, что означает, что они будут производить продукцию, близкую к номинальной, в менее чем идеальных условиях.

Однако их производство стоит дороже, и эта более высокая стоимость перекладывается на покупателя.Монопанели немного дороже поли-панелей той же мощности.

Процесс производства монопанелей также более расточителен, чем альтернативный вариант. Монопанели вырезаются из квадратных кремниевых пластин, а углы обрезаются, чтобы придать чёткую форму ячейки, показанную на рисунке ниже.

Наконец, монопанели имеют однородный черный цвет, потому что ячейки сделаны из цельного куска кремния. Я лично считаю, что они выглядят лучше, чем поли-панели, но, очевидно, это только вопрос предпочтений.

Поликристаллические солнечные батареи

Поликристаллические солнечные элементы состоят из нескольких частей кремния. Меньшие кусочки кремния формуются и обрабатываются для создания солнечного элемента. Этот процесс менее расточителен, так как сырье практически не выбрасывается во время производства.

Смешанный состав ячеек придает поли-панелям свой знаковый синий цвет. Если вы посмотрите на них поближе, то увидите, что текстура и цвет неровные из-за того, как сделаны ячейки.

Поли солнечные панели немного менее эффективны, чем монопанели из-за несовершенства поверхности солнечных элементов. Конечно, они дешевле в производстве, а значит, дешевле для конечного пользователя.

Тонкопленочные солнечные панели

Большинство используемых сегодня солнечных панелей изготавливаются из монокристаллических или поликристаллических солнечных элементов.

Существует третий тип солнечной технологии, называемый тонкопленочными панелями, который обычно используется для крупномасштабных коммунальных проектов и некоторых специальных приложений.Тонкопленочные панели создаются путем нанесения тонкого слоя проводящего материала на опорную пластину из стекла или пластика.

Тонкопленочные панели обычно не используются в жилых помещениях, поскольку они намного менее эффективны, чем моно- или поли-панели. Из-за нехватки места на крыше жилые потребители выбирают более традиционные панели из кристаллического кремния, чтобы максимально увеличить производство на доступном им пространстве.

Однако тонкопленочная технология дешевле в производстве, и в больших масштабах она становится более рентабельной.Для коммерческих и промышленных проектов без каких-либо ограничений по площади низкая эффективность тонкопленочной технологии не имеет особого значения. Тонкопленочные панели часто оказываются наиболее экономичным вариантом в таких ситуациях.

Кроме того, если вы когда-нибудь видели гибкие солнечные панели на автофургоне или лодке, то это возможно благодаря тонкопленочной технологии.

Поскольку они (как следует из названия) намного тоньше традиционных кремниевых пластин, тонкую пленку можно нанести на пластик для создания гибких солнечных панелей.Эти панели особенно хороши для дома на колесах и мобильного использования, когда у вас может не быть плоской поверхности для крепления панели.

Сравнение солнечных элементов N-типа и P-типа

В предыдущем разделе описан процесс формования из исходного материала кремниевых пластин.

Этот раздел касается процесса обработки этих пластин для превращения их в действующий солнечный элемент, который может генерировать электрический ток.

Что такое солнечные элементы P-типа?

Элементы P-типа обычно изготавливаются из кремниевой пластины, легированной бором.Поскольку бор имеет на один электрон меньше, чем кремний, он дает положительно заряженный элемент.

Клетки P-типа подвержены деградации под действием света, которая вызывает начальное падение производительности из-за воздействия света. Исторически это был наиболее распространенный метод лечения солнечных батарей.

Что такое солнечные элементы N-типа?

Элементы N-типа легированы фосфором, у которого на один электрон больше, чем у кремния, что делает элемент заряженным отрицательно.

Клетки N-типа невосприимчивы к бор-кислородным дефектам, и в результате на них не влияет светоиндуцированная деградация (LID).Как и следовало ожидать, они позиционируются как вариант премиум-класса, поскольку они меньше изнашиваются в течение срока службы панели.

Вот несколько примеров панелей N-типа:

В большинстве продаваемых нами панелей используются элементы P-типа, которые могут деградировать немного быстрее, но при этом хорошо работают более 30 лет.

Если учесть более низкую стоимость ячеек P-типа, обычно выгоднее использовать более дешевый модуль, который деградирует немного сильнее, в отличие от существенно более дорогой панели с немного меньшим ухудшением качества. Но эта оценка может измениться по мере развития технологии N-типа и снижения затрат со временем.

Другие различия в технологии солнечных элементов

Элементы PERC

PERC — это технология пассивированного эмиттера и тылового элемента . Элементы PERC отличаются дополнительным слоем материала на задней стороне солнечной панели, который называется пассивирующим слоем.

Думайте о пассивирующем слое как о зеркале. Он отражает свет, проходящий через панель, давая ему второй шанс поглотить солнечный элемент.Ячейка поглощает больше солнечного излучения, что приводит к более высокой эффективности панели.

Технология ячеек PERC набирает обороты, потому что включение пассивирующего слоя не увеличивает производственные задержки или затраты. Повышение эффективности более чем оправдывает дополнительный шаг в производственном процессе.

У Aleo Solar есть хорошая статья, которая дает больше информации об истории технологии PERC, а также больше технической информации о том, как она работает.

Половинчатые элементы

Половинчатые элементы звучат именно так: солнечные элементы, разрезанные пополам.

Меньший размер половинных ячеек дает им некоторые неотъемлемые преимущества, в основном (как вы уже догадались) повышенную эффективность по сравнению с традиционными ячейками.

Солнечные элементы передают электрический ток через ленты, соединяющие соседние элементы в панели. Часть этого тока теряется из-за сопротивления во время транспортировки.

Поскольку ячейки с половинным разрезом составляют половину размера традиционной ячейки, они генерируют половину электрического тока. Более низкий ток между ячейками означает меньшее сопротивление, что в конечном итоге делает ячейку более эффективной.

Кроме того, половинчатые клетки могут быть более теневыносливыми. Когда тень падает на солнечный элемент, это не только снижает выработку этой ячейки, но и всех остальных элементов, подключенных к ней последовательно.

Традиционная солнечная панель может иметь 60 солнечных элементов, соединенных последовательно. Если тень падает на одну серию ячеек, вы можете потерять одну треть продукции этой панели.

Напротив, панель, сделанная из половинных ячеек, будет иметь 120 половинных ячеек, соединенных последовательно / параллельно двумя цепочками по 60 ячеек.Тень, падающая на одну струну, не повлияет на вывод другой, что минимизирует производственные потери, вызванные проблемами затенения.

Двусторонние солнечные панели

Двусторонние солнечные панели — это панели, обработанные проводящим материалом с обеих сторон. Они предназначены для использования отраженного солнечного света, падающего на заднюю часть панели.

Теоретически это звучит как отличная идея, потому что вы удваиваете проводящую площадь поверхности панели. Но на практике двусторонние панели требуют гораздо более дорогой установки, чтобы получить реальные преимущества от технологии.

Систему необходимо установить на возвышении, чтобы под массивом оставался зазор. Это также требует правильного отражающего материала под вашим массивом, например, белых камней под наземным креплением или белой крыши.

Двусторонние панели значительно дороже в установке, и на данном этапе незначительного повышения эффективности недостаточно для возмещения дополнительных затрат на установку. Двусторонние панели еще не совсем готовы к всеобщему вниманию, хотя это может измениться по мере дальнейшего развития технологии.

Какие панели выбрать для моего проекта?

Возможно, сейчас вы чувствуете некоторую информационную перегрузку. Приятно разбираться в нюансах производственного процесса, но в конечном итоге у каждого возникает один вопрос: «какой из них мне купить?»

Наш совет всегда таков: посмотрите на стоимость ватта и двигайтесь дальше.

Чтобы провести справедливое сравнение продуктов, разделите стоимость панели на ее номинальную мощность. Результат покажет вам, сколько энергии вы будете генерировать на каждый потраченный доллар.Например:

Использование Mission Solar будет означать меньшее количество панелей в вашем массиве, но общая стоимость системы будет выше из-за более высокой стоимости панелей за ватт. (Обе эти панели представляют собой моно-солнечные панели. В данном случае разница в цене заключается в том, что панели Mission Solar производятся в Америке, а Astronergy импортируется из-за границы.) (например, технология сотовой связи или страна происхождения) играют важную роль в вашем решении.

Для получения дополнительной информации ознакомьтесь с нашим бесплатным руководством по покупке солнечных панелей.

Какой вариант лучше?

Есть много вещей, которые следует учитывать при установке системы солнечных панелей, одна из которых — какие солнечные панели выбрать.

Большинство солнечных панелей, представленных сегодня на рынке для бытовых солнечных энергетических систем, можно разделить на три категории: монокристаллические солнечные панели, поликристаллические солнечные панели и тонкопленочные солнечные панели.

Каждый из этих типов солнечных элементов приводит к тому, что солнечные панели имеют разные характеристики. Как узнать, какая солнечная панель вам больше всего подходит?

В этой статье мы рассмотрим различия между тремя типами солнечных панелей, чтобы помочь вам решить, какие из них должны быть установлены на вашей крыше.

Основными типами солнечных панелей на рынке являются тонкопленочные, монокристаллические и поликристаллические.

Какие бывают типы солнечных панелей?

Хотя существует множество различных солнечных панелей, большинство из них подойдут к одному из этих трех типов:

  • Монокристаллические солнечные панели
  • Солнечные панели поликристаллические
  • Тонкопленочные солнечные панели

Каждый тип имеет особый набор функций, которые делают их более подходящими для определенных солнечных проектов.Давайте подробнее рассмотрим каждый.

Что такое монокристаллические солнечные панели?

Монокристаллические солнечные панели являются наиболее распространенными для жилых солнечных установок.

Обзор

Плюсы Минусы
Высокая эффективность Более высокая стоимость
Эстетика

Монокристаллические солнечные панели — самые популярные солнечные панели, которые сегодня используются в солнечных установках на крыше.

Одна из причин, по которой люди выбирают монокристаллические солнечные панели, — это их внешний вид. Солнечные элементы в монокристаллических панелях имеют однотонный плоский черный цвет, что делает их популярными среди домовладельцев.

Монокристаллическую панель можно определить по форме кремниевых пластин, которые имеют форму квадратов со срезанными углами.

Строительство

Монокристаллические солнечные панели получили свое название от способа изготовления.Каждый из отдельных солнечных элементов содержит кремниевую пластину, состоящую из монокристалла кремния. Монокристалл формируется с использованием метода Чохральского, в котором «затравочный» кристалл помещается в чан с расплавленным чистым кремнием при высокой температуре.

Затем затравка вытягивается, и вокруг нее образуется расплавленный кремний, образуя один кристалл. Затем большой кристалл, также называемый слитком, разрезается на тонкие пластины, которые используются для изготовления солнечных элементов.

Обычно монокристаллическая панель содержит 60 или 72 солнечных элемента, в зависимости от размера панели.В большинстве жилых помещений используются панели из монокристаллического кремния с 60 ячейками.

Производительность

Монокристаллические солнечные панели обычно имеют самый высокий КПД и мощность среди всех типов солнечных панелей. Эффективность монокристаллических панелей может составлять от 17% до 22%.

Поскольку монокристаллические солнечные элементы состоят из монокристалла кремния, электроны могут легче проходить через элемент, что делает эффективность фотоэлементов выше, чем у других типов солнечных панелей.

Более высокая эффективность монокристаллических солнечных панелей означает, что им требуется меньше места для достижения заданной мощности. Таким образом, монокристаллические солнечные панели обычно имеют более высокую выходную мощность, чем поликристаллические или тонкопленочные модули.

Другими словами, вам понадобится меньше монокристаллических солнечных панелей в вашей солнечной энергетической системе, чтобы вырабатывать такое же количество энергии, как, скажем, большее количество поликристаллических солнечных панелей. Это делает монокристаллические солнечные панели идеальными для людей с ограниченным пространством на крыше.

Стоимость

Из-за способа производства монокристаллических панелей они в конечном итоге обходятся дороже, чем другие виды солнечных панелей. Их высокий КПД и мощность также повышают цену. Большинство солнечных панелей премиум-класса, таких как SunPower X-series и LG NeON, являются монокристаллическими.

По данным Национальной лаборатории Лоуренса Беркли, монокристаллические солнечные панели продаются примерно на 0,05 доллара за ватт дороже, чем поликристаллические модули. По мере совершенствования солнечных технологий и производства разница в цене между поликристаллическими и монокристаллическими панелями уменьшилась.

Узнайте, сколько будут стоить солнечные батареи для вашего дома

Что такое поликристаллические солнечные панели?

Поликристаллические солнечные панели популярны при проектировании солнечных систем с ограниченным бюджетом.

Обзор

Плюсы Минусы
Низкая стоимость Низкая эффективность
Эстетика

Поликристаллические панели, иногда называемые поликристаллическими панелями, популярны среди домовладельцев, которые хотят установить солнечные панели с ограниченным бюджетом.

Обычно у поликристаллических кремниевых солнечных элементов не срезаются углы, поэтому вы не увидите больших белых пятен на передней части панели, которые вы видите на монокристаллических панелях.

Из-за того, как они изготовлены, панели имеют синий цвет, который некоторые люди считают бельмом на глазу. Производственный процесс также делает их менее эффективными, чем монокристаллические панели.

Строительство

Поликристаллические солнечные элементы производятся как монокристаллические панели — затравочный кристалл помещается в расплавленный кремнезем.Однако вместо того, чтобы вытащить затравочный кристалл кремния, охлаждается весь резервуар с кремнием. Этот процесс охлаждения вызывает образование множества кристаллов.

Множественные кристаллы — это то, что придает панелям голубой мраморный вид. Как и монокристаллические панели, поликристаллические панели будут содержать 60 или 72 ячейки.

Производительность

Множественные кристаллы кремния в каждом солнечном элементе затрудняют прохождение электронов. Эта кристаллическая структура снижает эффективность поликристаллических панелей по сравнению с монокристаллическими панелями. Рейтинг эффективности поликристаллических панелей обычно составляет от 15% до 17%.

Однако, благодаря новым технологиям, поликристаллические панели теперь намного ближе по эффективности к монокристаллическим солнечным панелям, чем это было в прошлом.

Улучшения качества также помогли увеличить мощность стандартных поликристаллических панелей с 60 ячейками с 240 до более 300 Вт.

Стоимость

Поликристаллические солнечные панели дешевле производить, чем монокристаллические панели, что позволило им занять значительную долю рынка жилых установок в период с 2012 по 2016 год.

Но хотя они все еще дешевле монокристаллических панелей, это не намного. Это, а также их более низкая производительность, со временем заставили все больше людей выбирать монокристаллические солнечные панели.

Что такое тонкопленочные солнечные панели?

Несмотря на то, что тонкопленочные солнечные панели являются инновационной технологией, они не лучший вариант для домашних солнечных батарей.

Обзор

Плюсы Минусы
Гибкий и легкий Чрезвычайно низкий КПД
Эстетика Короткая продолжительность жизни

Тонкопленочные солнечные панели полностью отличаются от монокристаллических и поликристаллических солнечных батарей.

Они сплошного черного цвета, без обычных контуров кремниевых элементов, которые вы видите на лицевой стороне кристаллической солнечной панели. Обычно тонкопленочные солнечные панели легкие и гибкие, что упрощает их установку.

Тонкопленочные солнечные элементы в основном используются в крупномасштабных операциях, таких как коммунальные или промышленные солнечные установки, из-за их более низких показателей эффективности.

Строительство

Тонкопленочные солнечные панели изготавливаются путем нанесения тонкого слоя фотоэлектрического вещества на твердую поверхность, например стекло. Примеры этих фотоэлектрических веществ включают:

  • Аморфный кремний (a-Si)
  • Теллурид кадмия (CdTe)
  • Медь селенид галлия индия (CIGS)
  • Сенсибилизированные красителем солнечные элементы (DSC)

Каждый из этих материалов создает разные «типы» солнечных батарей, однако все они относятся к тонкопленочным солнечным элементам.

Из-за производственного процесса панели получаются легкими и, в некоторых случаях, гибкими.Однако это также делает их менее эффективными, чем кристаллические солнечные панели.

Некоторые популярные производители тонкопленочных панелей включают Sanyo, Kaneka и First Solar.

Узнайте, какой тип солнечных батарей лучше всего подходит для вашего дома

Производительность

Технология тонких пленок имеет репутацию худшей из технологий солнечных панелей, потому что они имеют самую низкую эффективность.

Еще несколько лет назад эффективность тонких пленок выражалась однозначными цифрами. Исследователи недавно достигли эффективности 23,4% с помощью прототипов тонкопленочных ячеек, но коммерчески доступные тонкопленочные панели обычно имеют эффективность в диапазоне 10–13%.

Низкий рейтинг эффективности означает, что вам потребуется установить больше тонкопленочных панелей для выработки того же количества электроэнергии, что и моно- или поликристаллические солнечные панели.

Из-за этого тонкопленочные солнечные панели не подходят для жилых помещений, где пространство ограничено.Вместо этого они лучше работают в более крупных установках, таких как промышленные или коммунальные солнечные батареи, потому что для удовлетворения потребностей в энергии можно установить больше панелей.

Тонкопленочные панели также имеют более короткий срок службы, чем другие типы солнечных панелей. Поскольку они быстрее изнашиваются, возможно, вам придется заменять их чаще.

Стоимость

Тонкопленочные солнечные панели имеют самую низкую стоимость из трех типов солнечных панелей из-за их низкой производительности.

Их также проще установить, чем панели из кристаллического кремния, что снижает их цену.Простой процесс установки — еще одна причина, по которой тонкопленочные панели отлично подходят для крупномасштабных коммерческих проектов.

Однако цена на монокристаллические и поликристаллические солнечные панели продолжает дешеветь. Это означает, что более мощная и эффективная монокристаллическая или поликристаллическая система не будет стоить вам намного больше, чем более крупная и менее эффективная тонкопленочная система.

Какая солнечная панель лучше всего подходит для вашего дома?

В общем, тонкопленочные солнечные панели не подходят для жилых солнечных установок.Хотя они дешевле, для них потребуется больше места, и они не будут производить столько электроэнергии, как монокристаллические или поликристаллические панели.

Для большинства солнечных панелей в жилых помещениях наиболее целесообразно установить монокристаллические панели. Хотя вам придется заплатить более высокую цену, вы получите лучшую эффективность и более гладкий внешний вид, чем при использовании поликристаллических панелей.

Однако, если у вас ограниченный бюджет, поликристаллические панели могут иметь больше смысла для вас.

По нашему скромному мнению, выбор между монокристаллическими и поликристаллическими солнечными панелями — не самый важный выбор, который вы делаете при покупке солнечных панелей. При выборе солнечных батарей для дома есть две вещи, которые мы считаем более важными, чем тип солнечной батареи:

Выбор хорошей марки солнечных батарей

Хорошая марка солнечных панелей принадлежит компании, которая вкладывает большие средства в качество своего производственного процесса, а также в свою репутацию.

Чтобы узнать, какие бренды возглавят рейтинг в 2021 году, ознакомьтесь с нашим рейтингом лучших солнечных панелей для дома.

Выбор подходящего установщика солнечной энергии

Чрезвычайно важно, чтобы вы выбрали качественную местную компанию по установке солнечных батарей, которая установит для вас солнечную систему.

Сравните цены и репутацию компаний по производству солнечной энергии в вашем районе, чтобы начать поиск подходящих солнечных батарей для вашего дома.

Сколько вы можете сэкономить с солнечной батареей?

Ключевые выносы

  • Есть три основных типа солнечных панелей: монокристаллические, поликристаллические и тонкопленочные.
  • Монокристаллические солнечные панели высокоэффективны и имеют элегантный дизайн, но стоят дороже, чем другие солнечные панели.
  • Поликристаллические солнечные панели дешевле монокристаллических, однако они менее эффективны и не так эстетичны.
  • Тонкопленочные солнечные панели являются самыми дешевыми, но имеют самый низкий рейтинг эффективности и требуют много места для удовлетворения ваших потребностей в энергии.
  • Гораздо важнее принять во внимание марку солнечных панелей и того, какой установщик солнечных батарей вы выберете, чем тип солнечных панелей, которые вы должны установить.

Монокристаллические и поликристаллические солнечные панели

Когда дело доходит до солнечных батарей, один из наиболее часто задаваемых вопросов — какой тип солнечного элемента лучше: монокристаллический или поликристаллический?

Что ж, если вы ищете подробный ответ, то вы попали в нужное место.

В этой статье мы проведем подробное сравнение монокристаллических и поликристаллических солнечных панелей, включая:

  1. Как они сделаны?
  2. Как они выглядят?
  3. Насколько они эффективны?
  4. Насколько хорошо они реагируют на тепло?
  5. Какова их ожидаемая продолжительность жизни?
  6. Могут ли они вторично использоваться?
  7. Насколько они дороги?

Но сначала давайте посмотрим, как работают солнечные панели

Solar Photovoltaics (PV) — это прямое преобразование в электрический ток на стыке двух веществ, подвергающихся воздействию солнечной энергии. Это происходит посредством процесса, известного как фотоэлектрический эффект , который вызывает поглощение фотонов и разрядку электронов. Солнечная энергия состоит из фотонов, которые представляют собой небольшие пакеты электромагнитной энергии. Материалы, которые демонстрируют этот фотоэлектрический эффект, известны как фотоэлектрические или солнечные элементы.

Солнечные элементы состоят из полупроводниковых материалов, таких как кремний, используемых в промышленности микроэлектроники. В солнечных элементах тонкая полупроводниковая пластина специально обрабатывается для образования электрического поля, положительного с одной стороны и отрицательного — с другой.Когда световая энергия попадает на солнечный элемент, электроны отрываются от атомов в полупроводниковом материале. Если электрические проводники присоединены к положительной и отрицательной сторонам, образуя электрическую цепь, электроны могут быть захвачены в виде электрического тока, то есть электричества. Затем это электричество можно использовать для питания нагрузки, такой как свет или инструмент.

Первый фотоэлектрический модуль был построен Bell Laboratories в 1954 году.

Итак, без лишних слов, давайте сразу перейдем к тому, как производятся солнечные панели.

A. Производство
  1. Как изготавливают монокристаллические солнечные панели

В 1918 польский ученый Ян Чохральский открыл блестящий метод производства монокристаллического кремния и назвал его Процесс Чохральского , и позже в 1941, построена первая камера.

Производство монокристаллических солнечных элементов включает 8 основных этапов , и в этом разделе мы быстро рассмотрим каждый из них .

  • Производство металлургического кремния

Основным ингредиентом, из которого делают монокристаллические солнечные панели, является кремний, также известный как кварцевый песок , кварцит или SiO2 .

Первым шагом в производстве монокристаллических элементов является извлечение чистого кремния из кварцита для производства металлургического кремния.

Для производства металлургического кремния используются специальные печи для плавления SiO2 и углерода при температурах выше 2552 градусов по Фаренгейту, оставляя после себя 98% до 99% чистого кремния.

Несмотря на высокую чистоту металлургического кремния, его недостаточно для использования в фотоэлектрических панелях.

Следовательно, необходимо провести дополнительную очистку.

  • Очистка металлургического кремния

Следующим шагом является очистка этого металлургического кремния с использованием процесса Сименс .

Сначала мы подвергали порошок металлургического кремния Si в реакторе с HCl при повышенных температурах, что приводило к газу SiHCl3 .

Затем газ охлаждают и сжижают для перегонки .

Дистилляция — это процесс испарения и конденсации жидкости для удаления нежелательных примесей.

Например, вы можете вскипятить морскую воду (соленую воду), а затем сконденсировать пар, чтобы получить чистую воду, так как соль останется на дне кастрюли.

Используя ту же концепцию, сжиженный SiHCl3 нагревается, а затем охлаждается для удаления примесей с более высокой или низкой точкой кипения, таких как кальций и алюминий .

После перегонки сжиженный SiHCl3 перемещается в другой изолированный реактор с горячим стержнем, затем смешивается с газообразным водородом и снова испаряется при температуре до 2732 градусов по Фаренгейту.

Из-за тепла и присутствия газа h3 , атомы хлора растворятся, оставив около 99,9999% чистого кремния.

Монокристаллические ячейки от поликристаллических отличаются тем, что монокристаллические панели изготавливаются из одного слитка чистого кремния.

Сделать единичный слиток чистого кремния было действительно сложно, пока Чохральский не открыл этот блестящий способ.

Сначала вы погружаете затравочный кристалл , который представляет собой небольшой стержень из чистого монокристаллического кремния, в расплавленный кремний.

После погружения стержня пора медленно потянуть и одновременно повернуть затравочный кристалл вверх, чтобы минимизировать эффект конвекции в расплаве.

По мере вытягивания затравочного кристалла жидкий кремний будет медленно затвердевать в течение 4 дня , образуя большой однородный цилиндрический монокристалл кремния, также известный как слиток кремния .

Размер слитка кремния зависит от 3 факторов : градиента температуры, скорости охлаждения и скорости вращения.

Итак, у вас есть огромный слиток монокристаллического кремния, но как из него сделать солнечные панели?

Ну, ответ очень прост, канатная пила.

Третий шаг — разрезать слиток кремния на очень тонкие пластинки с помощью очень острой проволочной пилы, создавая кремниевые пластины размером 1 мм, или 0,0393 дюйма, .

После разрезания пластин пора отполировать и вымыть пластины, чтобы очистить их от пыли, грязи и царапин.

Поскольку поверхность пластины очень плоская, многие световые лучи отражаются от нее, и, очевидно, вы этого не хотите, так как это снизит эффективность солнечной панели.

По этой причине производители делают поверхность пластин шероховатой и травят, чтобы свет мог многократно преломляться, что повышает эффективность панели и максимально предотвращает отражение света.

Кремниевые пластины заряжены положительно. Другими словами, они действуют как материал p-типа .

Для проведения электричества вам понадобится pn-переход , а для создания pn-перехода на каждую пластину добавляется отрицательно заряженный слой из фосфора , затем пластины перемещаются в специальные печи 1652 градусов по Фаренгейту для инъекции фосфор с азотом .

Смесь азота и фосфора создает мощный слой n-типа , в результате чего получается очень эффективная пластина p-n перехода , что, конечно же, увеличит эффективность панели.

Чтобы уменьшить потери электричества, на переднюю часть пластины напрессован высокопроводящий серебряный сплав, который обеспечивает идеальную передачу энергии и еще больше улучшает проводимость монокристаллической ячейки.

Наконец, последний этап в строительстве монокристаллических панелей — это сборка.

Каждая монокристаллическая солнечная панель состоит из пластин чистого кристалла от 32 до 96 , собранных в ряды и столбцы.

Количество ячеек на каждой панели определяет общую выходную мощность ячейки.

  1. Как изготавливаются поликристаллические солнечные панели?

Поликристаллические солнечные панели, также известные как многокристаллические или многокристальные солнечные панели, также изготавливаются из чистого кремния.

Однако, в отличие от монокристаллических, они сделаны из множества различных кремниевых фрагментов, а не из одного чистого слитка.

Разница между производством моно и поли солнечных элементов заключается в том, что после очистки кремния вместо медленного вытягивания слитка для получения однородного цилиндрического кристалла (процесс Чохральского ) расплавленный кремний оставляют для охлаждения и фрагментирования.

Эти фрагменты затем плавятся в печах и выливаются в тигли для выращивания кубической формы.

После затвердевания расплавленного кремния слитки разрезаются на тонкие пластины, затем полируются, улучшаются, рассеиваются и собираются так же, как монокристаллические панели.

B. Монокристаллические и поликристаллические солнечные панели Внешний вид
  1. Как выглядят монокристаллические панели?

Поскольку слиток чистого кремния круглый, разрезание их приведет к получению квадратных пластин с закругленными краями , что создает небольшие зазоры между собранными ячейками.

И из-за того, что они сделаны из чистого кремния, они имеют однородный темный вид из-за того, как свет взаимодействует с чистым кремнием .

Таким образом, вы можете легко распознать монокристаллические солнечные элементы по их однородному темному оттенку и квадрату с закругленными краями с небольшими промежутками между каждым элементом.

ٍ Не волнуйтесь, хотя монокристаллический солнечный элемент темный, для задних панелей и рам существует множество цветов и дизайнов, которые соответствуют вашим предпочтениям.

  1. Как выглядят поликристаллические солнечные панели?

В отличие от однородного темного вида, который имеют монокристаллические солнечные элементы, поликристаллические элементы имеют тенденцию иметь синий оттенок из-за того, как солнечный свет взаимодействует с поликристаллическими.

Более того, поскольку поликристаллические пластины не вырезаны из цилиндров, как монокристаллические, у них не будет закругленных краев.

Таким образом, их легко узнать по голубоватому оттенку и отсутствию закругленных краев .

Поликристаллические ячейки также имеют множество красочных задних листов и конструкций каркаса, которые определенно подойдут для вашей крыши.

C. Эффективность монокристаллических и поликристаллических солнечных панелей

Эффективность солнечной панели является показателем того, насколько хорошо этот элемент преобразует солнечный свет в электричество.

Например, если мы принесли 2 различных солнечных панелей, одна с эффективностью 10%, , а другая — 20%, , и мы излучаем одинаковое количество света в течение того же времени.

Последний будет производить почти двойную электроэнергии, произведенную первым.

  1. Насколько эффективны монокристаллические солнечные панели?

Среди различных типов солнечных панелей монокристаллические элементы имеют наивысшую эффективность, обычно в диапазоне 15-20%, , и ожидается, что она станет еще выше.

Интересный факт: В 2019 году Национальной лаборатории возобновляемых источников энергии удалось разработать шестиконтактный солнечный элемент с эффективностью 47.1% устанавливает 2 новых мировых рекорда.

  1. Насколько эффективны поликристаллические солнечные панели?

Поскольку каждая поликристаллическая ячейка состоит из слишком большого количества кристаллов, для движения электронов остается меньше места, что снижает эффективность выработки электроэнергии.

Хотя монокристаллические элементы имеют более высокий КПД, разница между монокристаллическими и поликристаллическими ячейками не так уж велика.

Большинство поликристаллических фотоэлементов имеют КПД от 13% до 16% , что по-прежнему является очень хорошим соотношением, и ожидается, что в будущем оно будет только выше.

D. Температурный коэффициент моно-кремния и поли-кремния?

Еще один важный фактор, о котором сильно не замечают, — это температурный коэффициент .

Температурный коэффициент — это показатель того, насколько хорошо солнечный элемент функционирует при повышении температуры.

Другими словами, он указывал на потерю эффективности на каждый градус повышения температуры.

  1. Как температура влияет на эффективность монокристаллических солнечных панелей?

Большинство монокристаллических солнечных элементов имеют температурный коэффициент около -0.От 3% / C до -0,5% / C .

Таким образом, когда температура повышается с на 1 градус Цельсия или на 32 градуса по Фаренгейту , монокристаллический солнечный элемент временно теряет свою эффективность с 0,3% до 0,5% .

  1. Как температура влияет на эффективность поликристаллических солнечных панелей?

Поликристаллические фотоэлементы имеют более высокий температурный коэффициент, чем монокристаллические.

Это означает, что поликристаллические панели будут терять больше своей эффективности при повышении температуры, что делает их не оптимальными для использования в жарких областях.

E. Ожидаемый срок службы

Срок службы солнечного элемента определяется степенью деградации или ежегодными потерями при выработке энергии.

Большинство солнечных панелей имеют степень деградации от 0,3% до 1% .

Это означает, что каждый год общая выходная мощность вашей системы будет уменьшаться на 0,3% до 1% .

  1. Как долго прослужат монокристаллические солнечные панели?

Большинство монокристаллических фотоэлектрических панелей имеют годовую потерю эффективности в размере 0. 3% 0,8% .

Предположим, у нас есть монокристаллическая солнечная панель со степенью деградации 0,5% .

Через 10 лет система будет работать с КПД 95% , через 20 лет система будет работать с КПД 90% и так далее до тех пор, пока она не потеряет значительную часть своей мощности по производству энергии, которая он становится неэффективным.

На большинство монокристаллических солнечных панелей предоставляется гарантия 25 или 30 лет .Однако вы можете рассчитывать, что ваша система прослужит до 40 лет или более .

  1. Как долго прослужат поликристаллические солнечные панели?

Поликристаллические фотоэлементы имеют немного более высокую скорость деградации, чем монокристаллические, что заставляет их терять свою эффективность немного быстрее.

Не поймите меня неправильно, у них все еще продолжительность жизни 20-35 лет , а иногда и больше.

F. Утилизация
  1. Могут ли монокристаллические солнечные панели перерабатываться?

Короткий ответ — да, монокристаллические солнечные элементы можно переработать.

Монокристаллические солнечные панели состоят из 3 основных компонентов:

  • Монокристаллические элементы: Около 85% силиконовых пластин перерабатываются
  • Стекло: Почти 95% стекла можно повторно использовать
  • Металл: 100% металлических частей подлежат вторичной переработке

2. Можно ли перерабатывать поликристаллические солнечные панели?

Подобно монокристаллическому, около 90% всего материала, используемого для производства поликристаллических элементов, подлежат вторичной переработке.

А к 2030 году ожидается, что почти 45 миллионов новых модулей будут изготовлены из переработанных материалов, что эквивалентно 380 миллионам долларов США.

г. Стоимость
  1. Насколько дороги солнечные панели Mono-Si?

Монокристаллические солнечные панели имеют множество преимуществ, но одним из их основных недостатков является высокая начальная стоимость.

Среди всех типов фотоэлектрических солнечных панелей монокристаллические, безусловно, являются самыми дорогими в производстве.

Это связано с тем, что процесс производства монокристаллических солнечных элементов очень энергоемкий и приводит к образованию большого количества кремниевых отходов.

  1. Насколько дороги поликристаллические солнечные панели?

По сравнению с их эффективностью поликристаллические солнечные панели имеют меньшую стоимость ватта, что делает их дешевле, чем монокристаллические.

Причина этого в том, что производственный процесс создает меньше отходов и использует меньше энергии, что приводит к меньшим производственным затратам.

Интересный факт: Иногда панели из поли-Si изготавливаются из остатков производства моно-Si, что снижает количество отходов кремния.

Важно отметить, что хотя элементы из поли-Si дешевле, они занимают больше места, чем монокристаллические, для выработки того же количества энергии, что делает их менее компактными.

Монокристаллические и поликристаллические солнечные панели
Монокристаллические солнечные панели Поликристаллические солнечные панели
Материал: Одиночный кристалл чистого кремния Различные фрагменты кремния, плавящиеся вместе
Внешний вид: Однородные темные квадраты с закругленными краями Синие квадраты без закругленных краев
Эффективность преобразования: От 15% до 20% 13% от до 16%
Эффективность использования пространства: Эффективность Менее эффективность
Температура Коэффициент: -0. 3% / c от до -0,5% / c -0,3% / c от до -1% / c
Срок службы: Около 40 лет Около 35 лет
Возможность вторичного использования: Да Да
Стоимость: $$$ $$

Последние слова

Мы очень надеемся, что вам понравилась эта статья так же, как и нам.

Вы нашли это руководство полезным?

Если да, поделитесь этой статьей со своими друзьями и поделитесь с нами своими мыслями в разделе комментариев ниже.

Монокристаллические против поликристаллических солнечных панелей?

Это вопрос, который задает каждый супероптимизатор солнечной энергии: монокристаллические или поликристаллические солнечные панели лучше подходят для солнечной системы на крыше?

Солнечные панели могут повысить ценность вашего дома и снизить потребление энергии за счет снижения ежемесячных счетов за электроэнергию. Однако они могут быть дорогостоящими первоначальными вложениями, поэтому для вас жизненно важно максимизировать прибыль. Чем моно и поли солнечные панели различаются по производительности и стоимости, и какой тип лучше подходит для ваших нужд?

Рассматриваете установку солнечных панелей в жилых помещениях в Лас-Вегасе?
Свяжитесь с Bell Solar Electrical Systems сегодня!

В чем разница между монокристаллическими и поликристаллическими солнечными панелями?

В солнечных панелях используются солнечные элементы (также известные как фотоэлектрические элементы) для улавливания солнечной энергии и преобразования ее в электричество.Солнечные элементы состоят из необработанных кремниевых пластин, имеющих одинаковый размер.

Существует несколько типов солнечных панелей, и каждый из них выполняет одну и ту же функцию, которая сводится к улавливанию солнечной энергии и преобразованию ее в электричество. Настоящая разница заключается в составе технологии, используемой для выполнения этой функции: тип кремния в солнечном элементе.

Монокристаллические солнечные панели

Монокристаллические солнечные элементы изготовлены из монокристалла кремния, что придает им однородную структуру и высокий уровень чистоты.Это приводит к более высокой эффективности, чем поликристаллические солнечные элементы, а также к гладкому черному виду. Однако они более дорогие, поэтому не подходят для многих домовладельцев.

Поликристаллические солнечные панели

Кремний в поликристаллических солнечных панелях поступает из нескольких источников, что придает им неравномерный синий цвет. Производственный процесс намного проще и менее расточителен, так как он использует меньшие кусочки кремния. Это делает их менее дорогими, чем монокристаллические элементы, но также снижает их эффективность.

Каков срок службы поликристаллических и монокристаллических солнечных панелей?

Когда мы говорим о сроке службы солнечных панелей, мы имеем в виду, как долго они могут производить электричество при минимальном уровне эффективности. Солнечные панели могут прослужить десятилетия, но их выработка энергии со временем неуклонно снижается. Ожидается, что монокристаллические панели будут производить с более высокой эффективностью в течение более длительных периодов времени, чем поликристаллические панели, но технология просто еще недостаточно устарела, чтобы сказать это окончательно.

Большинство производителей предлагают две гарантии на свои солнечные панели: одну на производительность в течение первых десяти лет, а другую на эффективность в течение первых 25 лет. Ожидается, что солнечные панели потеряют 10-20% своей эффективности через 25 лет и могут больше не покрывать потребление энергии домохозяйством, но они все равно должны производить электричество.

Что лучше: моно или поли солнечные панели?

Монокристаллические солнечные панели могут производить больше энергии с большей эффективностью, чем поликристаллические солнечные панели, и сохранять это преимущество с течением времени. Это означает, что монопанели могут лучше использовать ограниченное пространство на вашей крыше, чем поли-панели. Однако монопанели дороже своих поли-аналогов.

Преимущества и недостатки монокристаллической солнечной панели

Плюсы:

  • Самая старая и самая развитая технология.
  • Обычно они конвертируются с более высокой эффективностью.
  • Они занимают больше места из-за высокого коэффициента конверсии.
  • Часто они выглядят более привлекательно, чем солнечные панели из поли.
  • У них долгий срок службы.
  • Лучше работает на ярком солнце.

Минусы:

  • Они бывают по более высокой цене.
  • Не так эффективно в тени.

Преимущества и недостатки поликристаллических солнечных панелей

Плюсы:

  • Цены намного доступнее.
  • Это обычный выбор для большинства жилых домов.
  • Прекрасно работает в тени.

Минусы:

  • Они не преобразуются так же эффективно, как моно солнечные батареи.
  • Больше вариаций в производственном процессе.
  • Более низкая эффективность использования пространства, чем у монопанелей.
  • Они не так эстетичны из-за своего пестрого синего цвета.

Можно ли смешивать поли- и монолитные солнечные панели?

Совместное использование солнечных панелей возможно, но обычно не рекомендуется из-за различных электрических характеристик панелей.Если у вас возникли обстоятельства, в которых вы хотели бы заняться микшерными панелями, лучше всего проконсультироваться с электриком, специализирующимся на солнечной энергии.

Заинтересованы в поликристаллических или монокристаллических солнечных батареях?

Если вы зациклены на различиях между моно и поли солнечными панелями, можете расслабиться. Какую бы солнечную систему вы ни выбрали, она принесет долгосрочную пользу вашим финансам и окружающей среде. Свяжитесь с Bell Solar & Electrical Systems , если вы хотите установить солнечную систему для своего дома или если вы хотите узнать больше о типах солнечных панелей, которые мы продаем!

монокристаллических ячеек vs.Поликристаллические ячейки: в чем разница?

Несмотря на то, что монокристаллические и поликристаллические солнечные элементы служат основной функцией преобразования солнечных лучей в полезную электроэнергию, как дистрибьюторы, так и установщики разделили два типа солнечных модулей на основе эстетики и цены. Поликристаллические модули легко отличить по голубым ячейкам, которые напоминают камуфляж расплавленного кремния. И наоборот, монокристаллические элементы обычно имеют однородный внешний вид, потому что они происходят из одного слитка кремния.

В стоимостном выражении стоимость производства поликристалла раньше была значительно ниже, чем его аналог. Однако на монокристаллические панели приходилось 38 процентов всех модулей, произведенных в 2017 году, по сравнению с 25 процентами в 2015 году. Поскольку производство монокристаллических элементов продолжает получать выгоду от экономии за счет масштаба, дебаты о моно и поли сместятся, чтобы включить другие аспекты технологии.

Было установлено, что поликлетки обычно дешевле и имеют голубоватый оттенок, но почему это так? Ответ кроется в первом этапе изготовления солнечного модуля: плавлении кремния для создания слитка или прямоугольной формы.Производители загружают примерно 1300 фунтов кремниевых пород в кварцевую форму для создания слитка. Камни нагреваются до 2450 градусов по Фаренгейту (температуры поверхности Солнца) примерно за 20 часов, а затем остывают на срок до 3 дней. Полученный слиток разрезается на узкие ячейки, в результате получается поликристаллическая структура. Посмотрите видео ниже, чтобы подробно ознакомиться с процессом:

Монокристаллические ячейки производятся по технологии Чохральского. Этот метод был разработан польским ученым Яном Чохральским в 1916 году при исследовании скорости кристаллизации различных металлов. Этот метод плавит поликремний, вводит затравочный кристалл и вытягивает кристалл вверх, чтобы создать однородный кремниевый стержень, свободный от примесей. Затем конусообразный стержень разрезают на отдельные ячейки с закругленными углами, чтобы минимизировать отходы. На видео ниже подробно описан процесс:

Помимо этих производственных различий, одно- и многоячеечные элементы немного отличаются по эффективности, температурным характеристикам и свойствам затенения.Поскольку монокристаллическая панель состоит из монокристалла, у электронов больше места для движения. Это отсутствие сопротивления также приводит к несколько более низкому температурному коэффициенту по сравнению с поликристаллическими модулями. Наконец, монокристаллические модули, как правило, производят больше в более поздние часы дня.

Поликристаллические модули подходят для проектов с высокой стоимостью, которые не ограничены пространством; однако по мере того, как ценовой разрыв между этими двумя ячейками продолжает сокращаться, ценностное предложение монокристаллических модулей становится все более привлекательным.Модули с более высокой плотностью мощности в конечном итоге приводят к снижению затрат на баланс системы и более высокому выходу энергии. Следовательно, многие производители модулей переводят свои линейки продуктов на более монокристаллические.

Чтобы узнать больше о полной линейке поликристаллических и монокристаллических модулей уровня 1 от CED Greentech, обязательно обратитесь к своему менеджеру по работе с клиентами или свяжитесь с нами сегодня.

Источники:

Greentech Media

EnergySage

Как производятся продукты

Поликристаллические и монокристаллические солнечные панели: в чем разница?

Современные солнечные панели сделаны из кремния, который является неметаллическим элементом большинства электронных устройств. Кремний используется, потому что он способен поглощать большинство длин волн света, чтобы произвести электрический заряд, и потому что производственные затраты на производство почти идеального кристалла низкие.

Основное различие между поликристаллическими и монокристаллическими солнечными панелями связано с чистотой кремния, используемого в модуле, и получаемой ориентацией кристаллов кремния.

Давайте рассмотрим другие отличия поликристаллических и монокристаллических солнечных панелей:

Поликристаллические солнечные панели

Поликристаллические солнечные панели состоят из нескольких кремниевых фрагментов, образующих так называемую пластину.Для этого материал методично расплавляют до тех пор, пока он не сформируется вместе.

Благодаря такому процессу разработки, солнечные панели называют поликристаллическими от слова «поли», что означает несколько или кратные. Создавая эти панели, производители делают упор на экономичность. Это включает в себя обеспечение эффективного плавления материалов, чтобы уменьшить пространство, в котором могут двигаться электроны. Благодаря этому солнечные панели работают хорошо, при этом общая эффективность снижается.

Чтобы различать поликристаллические и монокристаллические панели, рекомендуется смотреть на нижележащий оттенок. Поликристаллические солнечные панели имеют заметный синий оттенок. Для сравнения, монокристаллические солнечные панели имеют более черный оттенок.

Монокристаллические солнечные панели

Монокристаллические солнечные панели позиционируются производителями как передовая технология премиум-класса. Эти солнечные панели разработаны с использованием кремниевых пластин, которые устанавливаются с использованием кремниевых стержней перед тем, как превратиться в более тонкие пластины.«

В этих солнечных батареях упор сделан на использование монокристаллического кремния. Вот почему солнечные панели называют монокристаллическими, поскольку «моно» относится к особому понятию или материалу.

Монокристаллические панели отличаются изысканностью, эстетичностью и сохранением более высоких показателей эффективности в ходе отраслевых испытаний.

Чтобы повысить эффективность, монокристаллический кремний предлагает электронам дополнительное пространство для максимального увеличения потока электричества.Имея больше места, солнечные панели могут делать больше с меньшими усилиями и временем по сравнению со средней поликристаллической солнечной панелью.

Поликристаллические и монокристаллические солнечные панели

Несмотря на то, что у обеих панелей есть эстетические различия, а также базовые рейтинги эффективности, есть еще много различий между двумя популярными вариантами:

1. Стоимость

Инвестирование в солнечную энергетическую систему предполагает создание бюджета, и обе солнечные панели предлагают уникальные цены по сравнению друг с другом.

В случае монокристаллических солнечных панелей каждая пластина намного дороже по сравнению с поликристаллическими солнечными панелями. Это может значительно отличаться в зависимости от производителя солнечных батарей, особенно в случае крупномасштабных систем.

2. Выход

Монокристаллические солнечные панели повышают эффективность, когда речь идет о выходной мощности и потоке электроэнергии. Это связано с очищенным монокристаллическим кремнием, обрабатывающим солнечную энергию. Когда электричество проходит через ячейки, оно не встречает повышенного сопротивления, что обеспечивает плавность процесса.

Для сравнения: поликристаллические солнечные панели состоят из нескольких сплавляемых друг с другом фрагментов. Это приводит к неэффективности установки, вызывающей перебои в подаче электроэнергии.

Исследования по этой теме показали, что разница в общей выходной мощности составляет примерно 15%. Это может быть заметным фактором в крупномасштабных системах с высокой степенью использования. Чтобы компенсировать это несоответствие, поликристаллические солнечные панели продаются по сниженной цене.

Разница в эффективности объясняется чистотой кремния.

3. Долговечность

Срок службы солнечной панели может играть важную роль в определении эффективности и финансовой жизнеспособности системы. Важно не только затраты на установку, но и срок службы фотоэлектрической системы, который начинается с основных компонентов, таких как солнечные панели.

Для средней фотоэлектрической системы — гарантия на комплект может составлять приблизительно 20-25 лет в зависимости от производителя солнечных батарей.

Для поликристаллических солнечных панелей гарантия иногда сокращается из-за более низкого качества сборки. Для сравнения, монокристаллические солнечные панели устанавливаются как компонент премиум-класса, и на них часто распространяется гарантия в пределах 25-30 лет.

4. Температура

Выходные метрики могут различаться в зависимости от условий в конкретной среде. В более теплых условиях монокристаллические солнечные панели отличаются повышенным КПД благодаря тому, что панели сохраняют поток электроэнергии при повышении температуры.Для сравнения, поликристаллические солнечные панели начинают заметно снижать выходную мощность солнечной энергии при повышении температуры.

Тропический климат часто позволяет выделить этот фактор и начать демонстрировать, почему поликристаллические солнечные панели менее эффективны по всем направлениям. По мере повышения температуры поликристаллические солнечные панели быстро начинают демонстрировать признаки снижения мощности, что влияет на фотоэлектрическую систему.

В тропических условиях, где лето длиннее и теплее, рекомендуется использовать монокристаллические солнечные батареи.

5. Внешний вид

Поскольку солнечные панели видны (в зависимости от настройки), важно сравнить внешний вид двух солнечных панелей.

Как уже говорилось выше, поликристаллические солнечные панели приобретают синий оттенок. Этот синий цвет обусловлен типом используемого кремния (поликристаллический). Синий цвет обусловлен антибликовым покрытием, которое используется для улучшения впитывающих свойств панелей.

Для сравнения, монокристаллические солнечные панели имеют черноватый оттенок.Черная поверхность монокристаллической панели делает их более эффективными в поглощении света.

Что использовать: монокристаллический или поликристаллический?

Ваш выбор зависит от следующих факторов:

Шаг

Фотоэлектрическая система зависит исключительно от правильной установки солнечных панелей и того, как они интегрированы в планировку собственности. Это включает в себя установку солнечных панелей для максимального увеличения выходной мощности и выработки электроэнергии.

Из-за этого фактора ограниченная крыша требует эффективных солнечных панелей, чтобы получить большую ценность на квадратный фут. Именно здесь монокристаллические солнечные панели предлагают наибольшую ценность и производительность, несмотря на их стоимость.

Для тех, у кого есть обширное пространство на крыше для более крупной фотоэлектрической системы, поликристаллические солнечные панели могут быть экономичным вариантом при выработке значительной мощности. В наземных фотоэлектрических системах можно использовать поликристаллические солнечные панели из-за дополнительного пространства.

Погода

Условия окружающей среды выходят за рамки количества солнечного света, доступного солнечным батареям ежедневно. Погода играет важную роль в том, насколько эффективны солнечные панели в выработке электроэнергии и поддержании разумных показателей эффективности.

Сюда входят такие факторы, как снег, пыль и / или тень.

Поликристаллические солнечные панели не только экономичны, но и более долговечны в суровых погодных условиях.

В этих условиях монокристаллические солнечные панели можно установить с помощью так называемого микроинвертора.Эти вложения могут дать хорошие результаты и помочь поддерживать желаемые показатели эффективности, ожидаемые от более высококачественного компонента.

Климат

Наряду с условиями окружающей среды, такими как погода, также важно сосредоточиться на климате (то есть на жаре).

Монокристаллические солнечные панели могут выдерживать более жаркие условия, такие как тропическая погода, без поломок и / или снижения эффективности. С другой стороны, поликристаллические солнечные панели склонны к падению потока электричества, как только увеличивается нагрев.Из-за дополнительной нагрузки на поликристаллические солнечные панели это может привести к их преждевременному старению.

Это не главный фактор, поскольку обе солнечные панели устойчивы, это по-прежнему переменная, которая играет роль в процессе принятия решений при инвестировании в новую фотоэлектрическую систему.

Последние мысли

Поликристаллические и монокристаллические солнечные панели продолжают оставаться золотым стандартом для новых фотоэлектрических систем. Отраслевые эксперты продолжают разбираться в мелких тонкостях того, что дают эти панели, как они работают и их ценность в различных условиях.

В целом, основной упор делается на эффективность, поскольку именно она движет фотоэлектрической системой промышленного уровня после ее установки на месте. Основываясь на основных показателях, монокристаллические солнечные панели могут обеспечить заметный рост эффективности примерно на 2-3%.

Принимая во внимание этот показатель эффективности 2–3%, при крупномасштабном предприятии может наблюдаться значительное падение производительности в течение всего года из-за этой неэффективности. С другой стороны, бытовая фотоэлектрическая система может обойтись без поликристаллических солнечных батарей.

Обе солнечные панели служат долго, предлагают отличную стоимость и хорошо интегрируются с недвижимостью нового поколения. Все сводится к внешнему виду, эффективности 2–3% и долговечности в зависимости от условий окружающей среды.

.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.