Принцип работы двигателя внешнего сгорания: виды, принцип работы, особенности :: SYL.ru
виды, принцип работы, особенности :: SYL.ru
Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.
Происхождение устройств
В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть «двигателями горячего воздуха», которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.
В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.
Работа установки
Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.
Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.
Первый тип двигателя. «Альфа»
Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.
Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.
Второй образец. «Бета»
Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.
Последняя модель. «Гамма»
Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип – это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.
Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.
Применение устройств в настоящее время
Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:
- Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид «насоса» можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
- Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
- Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
- Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.
Преимущества использования двигателя
Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:
Двигатель Стирлинга. Устройство и принцип работы
Двигатель внутреннего сгорания вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.
С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.
Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.
Роберт Стирлинг (1790-1878 года жизни):
История двигателя Стирлинга
Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.
Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа.
Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:
P*V=n*R*T
здесь
- P – сила действия газа в двигателе на единицу площади;
- V – количественная величина, занимаемая газом в пространстве двигателя;
- n – молярное количество газа в двигателе;
- R – постоянная газа;
- T – степень нагрева газа в двигателе К,
Модель двигателя Стирлинга:
За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.
Цикл
Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.
Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.
Идеальный цикл Стирлинга, (диаграмма «температура-объём»):
Идеальные круговые явления:
- 1-2 Изменение линейных размеров вещества с постоянной температурой;
- 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
- 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
- 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.
Идеальный цикл Стирлинга, (диаграмма «давление-объём»):
Из расчёта (моль) вещества:
Подводимое тепло:
Получаемое охладителем тепло:
Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):
R – Универсальная постоянная газа;
СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.
За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.
КПД кругового явления:
ɳ =
Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупност
Двигатель внешнего сгорания история создания. Принцип работы двигателя внешнего сгорания
Современная автомобильная промышленность достигла такого уровня, что без серьезных исследований невозможно добиться кардинальной модернизации в конструкции двигателей внутреннего сгорания.
Одни автоконцерны сконцентрировали свои силы на разработке и подготовке к выпуску в серию электрических и гибридных автомобилей, другие инженерные центры затрачивают финансовые средства в проектирование двигателей на альтернативном топливе, изготовленном из возобновляемых источников. Существуют другие различные разработки двигателей, которые в будущем могут стать новым двигателем для различных средств транспорта.
Таким возможным источником энергии механического движения для автомобильного транспорта будущего может стать двигатель внешнего сгорания, изобретенный в 19 веке ученым Стирлингом.
Устройство и принцип работы
Двигатель Стирлинга выполняет преобразование тепловой энергии, получаемой из внешнего источника, в механическое движение благодаря изменению температуры жидкости, циркулирующей в закрытом объеме.
В первое время после изобретения такой двигатель существовал в виде машины, действующей на принципе теплового расширения.
В цилиндре тепловой машины воздух перед расширением нагревался, перед сжатием охлаждался. Вверху цилиндра 1 находится водяная рубашка 3, дно цилиндра непрерывно нагревается огнем. В цилиндре расположен рабочий поршень 4, имеющий уплотнительные кольца. Между поршнем и дном цилиндра расположен вытеснитель 2, передвигающийся в цилиндре со значительным зазором.
Воздух, находящийся в цилиндре, перекачивается вытеснителем 2 к дну поршня или цилиндра. Вытеснитель движется под действием штока 5, проходящего через уплотнение поршня. Шток в свою очередь приводится в действие эксцентриковым устройством, вращающимся с запаздыванием на 90 градусов от привода поршня.
В позиции «а» поршень расположен в нижней точке, а воздух находится между поршнем и вытеснителем, охлаждается стенками цилиндра.
В следующей позиции «б» вытеснитель перемещается вверх, а поршень остается на месте. Воздух, находящийся между ними, выталкивается ко дну цилиндра, охлаждаясь.
Позиция «в» — рабочая. В ней воздух нагревается дном цилиндра, расширяется и поднимает два поршня к верхней мертвой точке. После выполнения рабочего хода вытеснитель опускается ко дну цилиндра, выталкивая воздух под поршень, и охлаждаясь.
В позиции «г» охлажденный воздух готов к сжатию, и поршень перемещается от верхней точки к нижней. Так как работа сжатия охлажденного воздуха меньше, чем работа расширения нагретого воздуха, то образуется полезная работа. Маховик при этом служит своеобразным аккумулятором энергии.
В рассмотренном варианте двигатель Стирлинга обладает малым КПД, так как теплота воздуха после рабочего хода должна отводиться через стенки цилиндра в охлаждающую жидкость. Воздух за один ход не успевает снизить температуру на необходимую величину, поэтому необходимо было продлить время охлаждения. Из-за этого скорость мотора была маленькой. Термический КПД был также незначительным. Тепло отработанного воздуха уходило в охлаждающую воду и терялось.
Разные конструкции
Существуют различные варианты устройства силовых агрегатов, действующих по принципу Стирлинга.
Конструкция исполнения «Альфа»
Этот двигатель включает в себя два отдельных рабочих поршня. Каждый поршень расположен в отдельном цилиндре. Холодный цилиндр находится в теплообменнике, а горячий нагревается.
Конструкция исполнения «Бета»
Цилиндр с поршнем охлаждается с одной стороны, и нагревается с противоположной стороны. В цилиндре перемещается силовой поршень и вытеснитель, служащий для уменьшения и увеличения объема рабочего газа. Регенератор выполняет обратное перемещение остывшего газа в нагретое пространство двигателя.
Конст
Тепловой двигатель — это… Что такое Тепловой двигатель?
Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.
История
Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).
Теория
Работа, совершаемая двигателем, равна:
- , где:
- — количество теплоты, полученное от нагревателя,
- — количество теплоты, отданное охладителю.
Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:
Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():
Типы тепловых двигателей
Двигатель Стирлинга
Дви́гатель Сти́рлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.
Поршневой двигатель внутреннего сгорания
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр. , дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.
Роторный (турбинный) двигатель внешнего сгорания
Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.
Роторный (турбинный) двигатель внутреннего сгорания
Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.
Реактивные и ракетные двигатели
Твёрдотельные двигатели
(источник журнал “Техника молодёжи“)== == Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.
Двигатель внешнего сгорания — Карта знаний
- Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.
К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей.
Источник: Википедия
Связанные понятия
Ди́зельный дви́гатель (в просторечии — дизель) — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха. Применяется в основном на судах, тепловозах, автобусах и грузовых автомобилях, тракторах, дизельных электростанциях, а к концу XX века стал распространен и на легковых автомобилях. Назван по имени изобретателя. Первый двигатель, работающий по такому принципу, был построен Рудольфом Дизелем в 1897 году… Двигатель Хессельмана является комбинацией бензинового и дизельного двигателя, предложен шведским инженером Йонасом Хессельманом в 1925 году. Впоследствии данный тип двигателя применялся в тяжёлых грузовиках и автобусах, выпущенных в промежуток с 1920-х по 1930-е годы. Шеститактный двигатель — это тип двигателя внутреннего сгорания, для которого за основу взят четырёхтактный двигатель, в котором полный цикл работы происходит за шесть движений поршня. К шеститактным двигателям относят также двигатель типа M4+2, имеющий два поршня, в котором за полный рабочий цикл один поршень совершает 4 движения, а второй — 2. Газотурбинный двигатель (ГТД) — это двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Двигатель Ленуара — исторически первый серийно выпускавшийся двигатель внутреннего сгорания, запатентованный 24 января 1860 г. бельгийским изобретателем Жаном Жозефом Этьеном Ленуаром. Дви́гатель вну́треннего сгора́ния (ДВС) — двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу. Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбокомпрессор. Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка (нем. Motor — «двигатель», от лат. mōtor — «приводящий в движение») и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания. ЖРД замкнутой схемы (ЖРД закрытого цикла) — жидкостный ракетный двигатель, выполненный по схеме с дожиганием генераторного газа. В ракетном двигателе замкнутой схемы один из компонентов газифицируется в газогенераторе за счёт сжигания при относительно невысокой температуре с небольшой частью другого компонента, и получаемый горячий газ используется в качестве рабочего тела турбины турбонасосного агрегата (ТНА). Сработавший на турбине генераторный газ затем подаётся в камеру сгорания двигателя, куда… Топливная аппаратура это общее название систем, снабжающих двигатель топливом. Топливная аппаратура является неотъемлемой частью автомобиля, как с бензиновым так и с дизельным двигателем. Часть механизмов топливной аппаратуры крепится непосредственно к двигателю. Комбинированный двигатель внутреннего сгорания (комбинированный ДВС) — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой (роторно-поршневой) и лопаточной машины (турбина, компрессор), в котором в осуществлении рабочего процесса участвуют обе машины. Парогазовая установка (англ. Combined Cycle Gas Turbine, CCGT) — электрогенерирующая станция, служащая для производства электроэнергии. Турбореактивный двигатель (ТРД, англоязычный термин — turbojet engine) — воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Нефтяной двигатель (также керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель, полудизель) — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе. Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле и т. д. Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу. Транспортное средство — техническое устройство для перевозки людей и/или грузов. В отличие от грузоподъёмных и подъёмно-транспортных устройств, транспортные средства используют, как правило, для перевозки на относительно дальние расстояния. Аккумуляторная топливная система или система типа «коммон рэйл» (англ. common rail — общая магистраль) — система подачи топлива, применяемая в дизельных двигателях. В системе типа common rail насос высокого давления нагнетает дизельное топливо под высоким давлением (до 300 МПа, в зависимости от режима работы двигателя) в общую топливную магистраль существенного объёма (аккумулятор). Воздухомобиль (пневмомобиль) — автомобиль с пневматическим двигателем, использующий для движения сжатый воздух. «ЖРД c открытым циклом», «ЖРД без дожигания» (англ. Gas-generator cycle) — схема работы жидкостного ракетного двигателя, использующего два жидких компонента — горючее и окислитель. Часть топлива сжигается в газогенераторе и полученный горячий газ — часто называемый генераторным газом — используется для приведения в действие топливных насосов, после чего сбрасывается. Открытую схему ЖРД также называют газогенераторным циклом. В некоторых случаях, для привода турбины используется отдельное топливо… Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий… Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение. Камера сгорания — объём, образованный совокупностью деталей двигателя или печи (в последнем случае камера сгорания называется топкой) в котором происходит сжигание горючей смеси или твёрдого топлива. Конструкция камеры сгорания определяется условиями работы и назначением механизма или печи в целом; как правило используются жаропрочные материалы. Газогенера́торный автомоби́ль — автомобиль, двигатель внутреннего сгорания которого получает в качестве топливной смеси газ, вырабатываемый газогенератором. Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки. Водородный транспорт — это различные транспортные средства, использующие в качестве топлива водород. Это могут быть транспортные средства как с двигателями внутреннего сгорания, с газотурбинными двигателями, так и с водородными топливными элементами. Жи́дкостный раке́тный дви́гатель (ЖРД) — химический ракетный двигатель, использующий в качестве топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно-, двух- и трёхкомпонентные ЖРД. Тюнинг двигателя (англ. tune — настраивать) или форсирование двигателя (фр. forcer или англ. force — стимулировать) — проведение комплекса технических мероприятий по доводке и модернизации двигателя, с целью повышения величины его крутящего момента и максимальных оборотов, т.е. повышения эффективной мощности двигателя. Рядный четырёхцилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением четырёх цилиндров, и поршнями, вращающими один общий коленчатый вал. Часто обозначается I4 («ай-фор») или L4 («Straight-4», «In-Line-Four»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-4 (/4) — например, двигатель автомобиля «Москвич-412». Теплово́й дви́гатель — аппарат, превращающий теплоту в механическую энергию, используя зависимость объёма вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях). Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур… Термодымовая аппаратура (ТДА) — система постановки дымовых завес на отечественных танках, основанная на принципе испарения топлива с горячих деталей двигателя (лопаток турбины газотурбинного двигателя или выпускного коллектора дизельного) с последующей конденсацией в атмосфере в белый туман. Газовый двигатель — двигатель внутреннего сгорания, использующий в качестве топлива сжиженные углеводородные газы (пропан-бутан) или природный газ (метан). Система впрыска топлива — система подачи топлива, массово устанавливаемая на бензиновых автомобильных двигателях, начиная с 1980-х годов. Основное отличие от карбюраторной системы — подача топлива осуществляется путём принудительного впрыска топлива с помощью форсунок во впускной коллектор или в цилиндр. Автомобили с такой системой питания часто называют инжекторными. В авиации на поршневых моторах такая система начала применяться значительно раньше — с 1930-х годов, но по причине низкого уровня… Цикл Аткинсона — модифицированный цикл Отто 4-тактного двигателя внутреннего сгорания. Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности ДВС при… Паровой трактор — трактор или тягач, использующий в качестве силовой установки паровой двигатель (тепловой двигатель внешнего сгорания). Подобные трактора активно производились и использовались в первой половине 20-го века, но из-за низкой эффективности примитивных конструкций парового двигателя того времени быстро были вытеснены из области применения с появлением эффективных конструкций двигателя внутреннего сгорания, а также с началом эпохи дешёвого бензина с окончанием Второй мировой войны. В СССР в различные годы выпускались несколько серий стационарных бензиновых двигателей для привода электрических генераторов, насосов, сельскохозяйственных машин. Эти же двигатели широко использовались на маломерных судах. Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за… Турбовинтово́й дви́гатель — тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина — высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент… Форсажная камера (форкамера или ФК) — камера сгорания в турбореактивном двигателе, расположенная за его турбиной. Роторно-лопастной двигатель (сокр. РЛД) — тип теплового роторного двигателя, в котором давление расширяющихся газов воспринимают вращающиеся на валу лопасти. Пиростартёр — устройство для запуска теплового двигателя (например, ДВС или газотурбинного), использующее энергию горячих газов сгорающего пиротехнического заряда. Применяется при жёстких ограничениях по весу (в авиации), для резервирования систем электро- или пневмозапуска (резервные энергетические агрегаты), либо при полном отсутствии или недостаточной мощности имеющихся электро- и пневмосистем (ранние ДВС). Дельтообразный двигатель (Napier Deltic) — это британский двигатель со встречным движением поршней, бесклапанный, двухтактный дизельный двигатель, использовавшийся в морском деле и в локомотивах. Разработан и производился компанией Napier & Son. Пусковые обороты двигателя внутреннего сгорания — частота вращения коленчатого вала в момент запуска двигателя (см. Пусковая система двигателя внутреннего сгорания). Холостой ход — специальный режим работы двигателя внутреннего сгорания на неподвижном автомобиле. Бензи́новые электроста́нции — компактные автономные силовые установки для производства электрической энергии. Используются в качестве основного или резервного источника электроснабжения. Виды генераторов…Подробнее: Бензиновая электростанция
Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.Подробнее: Бензиновый двигатель внутреннего сгорания
Поршневой двигатель внешнего сгорания Википедия
Паровая машина | |
Горизонтальная стационарная двухцилиндровая паровая машина для привода заводских трансмиссий. Конец XIX в. Музей индустриальной культуры. Нюрнберг | |
Медиафайлы на Викискладе |
Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.
Паровая машина вместе с рядом подсобных машин и устройств называется паросиловой станцией.[1]
История
Первая паровая машина была построена в XVII веке французским физиком Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году.
В России первая действующая паровая машина была построена в 1766 году по проекту Ивана Ползунова, предложенному им в 1763 году. Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. Но увидеть своё изобретение в работе И. И. Ползунову не пришлось: он умер 27 мая 1766 года, а его машина пущена в эксплуатацию на Барнаульском заводе только летом[2]. Через пару месяцев из-за поломки она перестала действовать и впоследствии была демонтирована.
Принцип действия
Схема паровой машины тандем: 1 — поршень, 2 — поршневой шток, 3 — ползун, 4 — шатун, 5 — кривошип, 6 — вал, 7 — маховик, 8 — скользящий клапан, 9 — центробежный регулятор Схема работы паровой машины двойного действияДля работы паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механическим частям.
Принцип действия поршневой паровой машины показан на иллюстрации. Работа поршня 1 посредством штока 2, ползуна 3, шатуна 4 и кривошипа 5 передаётся главному валу 6, несущему маховик 7, который служит для снижения неравномерности вращения вала. Эксцентрик, сидящий на главном валу, с помощью эксцентриковой тяги приводит в движение золотник 8, управляющий впуском пара в полости цилиндра. Пар из цилиндра выпускается в атмосферу или поступает в конденсатор. Для поддержания постоянного числа оборотов вала при изменяющейся нагрузке паровые машины снабжаются центробежным регулятором 9, автоматически изменяющим сечение прохода пара, поступающего в паровую машину (дроссельное регулирование, показано на рисунке), или момент отсечки наполнения (количественное регулирование).
Поршень образует в цилиндре паровой машины одну или две полости переменного объёма, в которых совершаются процессы сжатия и расширения, что показано кривыми зависимости давления p от объёма V указанных полостей. Эти кривые образуют замкнутую линию в соответствии с тепловым циклом, по которому работает паровая машина между давлениями p1 и p2, а также объёмами V1 и V2. Первичный поршневой двигатель предназначен для преобразования потенциальной тепловой энергии (давления) водяного пара в механическую работу. Рабочий процесс паровой машины обусловлен периодическими изменениями упругости пара в полостях её цилиндра, объём которых изменяется в процессе возвратно-поступательного движения поршня. Пар, поступающий в цилиндр паровой машины расширяется и перемещает поршень. Возвратно-поступательное движение поршня преобразуется с помощью кривошипно-шатунного механизма во вращательное движение вала. Впуск и выпуск пара осуществляются системой парораспределения. Для снижения тепловых потерь цилиндры паровой машины окружаются паровой рубашкой.
Моменты начала и конца процессов расширения и сжатия пара дают четыре основные точки реального цикла паровой машины: объём Ve, определяемый точкой 1 начала или предварения впуска; объём конца впуска или наполнения Е, определяемый точкой 2 отсечки наполнения; объём предварения выпуска или конца расширения Va, определяемый точкой 3 предварения выпуска; объём сжатия Vc, определяемый точкой 4 начала сжатия. В реальной паровой машине перечисленные объёмы фиксируются парораспределительными органами.
Коэффициент полезного действия
Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла.
КПД тепловой машины равен:
- ηth=WoutQin{\displaystyle \eta _{th}={\frac {W_{out}}{Q_{in}}}},
где Wout — механическая работа, Дж; Qin — затраченное количество теплоты, Дж.
Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передаётся от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):
- ηth≤1−T2T1{\displaystyle \eta _{th}\leq 1-{\frac {T_{2}}{T_{1}}}}
Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД в 30—42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать КПД в 50—60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.
Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.
Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.
У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении, конкретно — при давлении поступающего из котла пара. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют около 1 °C. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.
Преимущества и недостатки
Основным преимуществом паровых машин, как двигателей внешнего сгорания, в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива (источник тепла) — от кизяка до цепной реакции деления урана.
Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового океана на разных глубинах.
Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга, которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.
Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает, а, наоборот, возрастает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки и Китая, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.
В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов, со множеством современных усовершенствований, таких как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию[уточнить]. Экономические качества таких паровозов сравнимы с современными тепловозами и электровозами[уточнить].
Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог.
Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.
Важным преимуществом поршневых паровых двигателей является сохранение максимального крутящего момента на любых оборотах, вплоть до самых минимальных. Это даёт паровым транспортным средствам динамику, недостижимую для нормальных средств с ДВС — преодоление уклонов на любой скорости, чрезвычайно медленный ход, плавный ход без рывков и т. д., а безрельсовым обеспечивает исключительную проходимость по бездорожью, несклонность к пробуксовке.
Благодаря высокому крутящему моменту поршневые паровые двигатели так же не нуждаются в коробке скоростей и понижающем редукторе, передавая усилие непосредственно на колёса или на дифференциал ведущего моста.
Простота устройства, щадящий температурный режим и низкие обороты, характерные для поршневых паровых двигателей, значительно повышают их ресурс, что обеспечивает им высокую надёжность и долговечность.
Поршневая паровая машина способна длительно выдерживать высокие перегрузки (до 100 %), на что ДВС неспособны.
Поршневая паровая машина не требует поддержания оборотов на холостом ходу и расходует пар строго пропорционально нагрузке, что значительно улучшает её экономичность. В современных автоматизированных котлах высокого давления подача топлива может отключаться сколь угодно часто, как только расход пара прекращается, а повторный пуск происходит практически мгновенно.
Поршневая паровая машина почти бесшумна.
Сжигание топлива в специальной камере при нормальном давлении позволяет провести полное окисление без образования токсичных продуктов. Использование геотермальной энергии, энергии солнца или других естественных источников может сделать паровую машину полностью экологически чистой. В результате экологический потенциал паровых машин гораздо выше, чем у двигателей внутреннего сгорания.
Изобретение и развитие
Паровая машина ПапенаПервое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться.
Реальная паровая турбина была изобретена намного позже, в средневековом Египте, турецким астрономом, физиком и инженером XVI века Такиюддином аш-Шами. Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колёса.
Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах. Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.
Паровая машина была создана испанским изобретателем Иеронимо Аянсом де Бомонт, изобретения которого повлияли на патент англичанина Т. Севери (см. ниже). Принцип действия и применение паровых машин были описаны также в 1655 году англичанином Эдвардом Сомерсетом; в 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в XIX веке). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной.
Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х годов в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив. Система работала только как демонстрационная модель: для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена. Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку, приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана.
Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году. На своё устройство Севери в том же году получил патент. Это был паровой насос без поршня, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы насоса иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт, изобретатель назвал его «другом рудокопа».
В 1712 году английский кузнец Томас Ньюкомен продемонстрировал свой «атмосферный (вакуумный) двигатель». Это был усовершенствованный паровой двигатель Севери, в котором Ньюкомен применил цилиндр с поршнем и существенно снизил рабочее давление пара. Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Именно насос Ньюкомена стал первым паровым двигателем, получившим широкое практическое применение.
Паровой двигатель Якоба Лёйпольда, 1720В 1720 году немецкий физик Якоб Лейпольд изобрёл двухцилиндровый паровой двигатель высокого давления, в котором рабочий ход совершается не низким давлением вакуума, образующимся после впрыска воды в цилиндр с горячим водяным паром, как в вакуумных двигателях, а высоким давлением горячего водяного пара. Отработанный пар сбрасывается в атмосферу. Но машины высокого давления были построены только через 80 лет, в начале XIX века, американцем Оливером Эвансом и англичанином Ричардом Тревитиком.
В 1763 году механиком И. И. Ползуновым была спроектирована первая в России двухцилиндровая вакуумная паровая машина для приведения в действие воздуходувных мехов на барнаульских Колывано-Воскресенских заводах, которая была построена в 1764 году.
В 1765 году Джеймс Уатт, для повышения КПД вакуумного двигателя Ньюкомена, сделал отдельный конденсатор. Двигатель всё ещё оставался вакуумным.
В 1781 году Джеймс Уатт запатентовал вакуумную паровую машину с кривошипно-шатунным механизмом, которая производила непрерывное вращательное движение вала (в отличие от поступательного движения в вакуумном двигателе водоподъёмного насоса Ньюкомена). Двигатель всё ещё оставался вакуумным, но вакуумный двигатель Уатта с кривошипно-шатунным механизмом, мощностью 10 лошадиных сил, стало возможным, при наличии каменного угля и воды, устанавливать и использовать в любом месте для любой цели. С вакуумным двигателем Уатта принято связывать начало промышленной революции в Англии.
Примечательно, что первой известной автоматической системой управления была система регулирования скорости пара, установленная на паровом двигателе Уатта в 1775 году; почти век спустя Джеймс Клерк Максвелл описал первую математическую модель автоматизации.
Дальнейшим повышением эффективности парового двигателя было применение пара высокого давления американцем Оливером Эвансом и англичанином Ричардом Тревитиком.
В 1786 году Эванс попытался было запатентовать обычный паровой автомобиль, в котором приводом служила паровая машина высокого давления, но патентное управление отказало Эвансу, посчитав его идею нелепой фантазией. Позже Эванс изготовил в общей сложности около полусотни подобных машин, большая часть которых использовалась для привода насосных установок.
Тревитик, инициатор создания и применения стационарных машин, работающих при высоких давлениях (получил в 1800 году патент на «машину высокого давления»), освоил на практике цилиндрические паровые (так называемые «корнваллийские») котлы (1815). С 1797 года строил модели паровых повозок, а в 1801 года начал строить оригиналы повозок, последняя из которых прошла успешные испытания в Корнуэлле и Лондоне (1802—1803).
В 1801 году Ричард Тревитик построил первый в истории паровоз «Puffing Devil», затем в 1802 году паровоз «Coalbrookdale» для одноимённой угольной компании.
Тревитик успешно строил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм, или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Множество вакуумных двигателей, построенных ранее по схеме Джеймса Уатта, после изобретения Эванса и Тревитика были перестроены по схеме «корнуэльского двигателя» высокого давления.
В 1769 году французский изобретатель Николя-Жозеф Кюньо продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем. Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход, построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавэр между Филадельфией (штат Пенсильвания) и Бёрлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7—8 узлов. 21 февраля 1804 года на металлургическом заводе Пенидаррен в городе Мертир-Тидвил в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив, построенный Ричардом Тревитиком.
В 1824 году французский учёный и инженер Сади Карно в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» впервые описал цикл работы термодинамической системы, позже названный его именем[3][4].
С развитием паровозо- и пароходостроения прогресс паровой машины получил новый толчок. В течение XIX века усилиями многих талантливых инженеров паровая машина была значительно усовершенствована. Были разработаны конструкции котлов и различных вспомогательных систем (механизмов парораспределения, топливоподачи и т. п.), ставшие впоследствии классическими. Появились многоступенчатые, компаундные и тандемные типы, интересные промышленные модели. Практический КПД паровой машины был значительно повышен. Требования сухопутного транспорта и мелкого судостроения содействовали появлению компактных моделей с высокой удельной мощностью. Во второй половине века появились типы компоновок и систем, использованные затем в двигателях внутреннего сгорания: V-образные и звездообразные компоновки без крейцкопфа, блок-цилиндры с закрытым картером, тарельчатые клапаны с приводом от кулачкового вала и т. д. Параллельно шла разработка роторных альтернатив: паровой турбины, различных моделей коловратных двигателей.
К началу XX века была уже хорошо разработана теория и практика паровых машин, сохранившаяся до наших дней почти без изменений. Поршневые паровые машины безраздельно властвовали на железнодорожном и морском транспорте, паровые турбины всё чаще находили практическое применение на крупных морских судах. Подавляющее большинство коловратных (роторно-поршневых) типов было опробовано и по тем или иным причинам отвергнуто.
В первые десятилетия XX века отмечается бум транспортных средств с двигателями внутреннего сгорания, значительно пошатнувший авторитет паровой машины. Она уступает более лёгким и компактным конкурентам. К 1930-м годам бензиновые и дизельные двигатели почти полностью вытесняют паровую машину из лёгкого сухопутного транспорта, решительно вторгаются в области железнодорожного транспорта и судостроения. Считается, что паровая машина уже доживает свой век, безнадёжно устарела.
В 1930-е годы вокруг неё снова намечается некоторое оживление. Появляются новые материалы: нержавеющие стали, способные выдержать высокие температуры и давления, а также лёгкие и прочные алюминиевые сплавы. Это позволяет поднять давление пара до величин 30—100 атм, что делает паровую машину замкнутого цикла сопоставимой по габаритам, эффективности и цене с двигателем внутреннего сгорания. Внедрение водотрубной системы делает котёл компактным и безопасным. Налаживается серийное производство паровых легковых и грузовых автомобилей, тракторов, автобусов и даже танков и самолётов. Появляются новые идеи: внедрение звездообразных паровых машин в ступицы колёс, в задний мост и т. д. Принимаются во внимание ценные качества паровой машины: высокий крутящий момент, отличная проходимость по бездорожью, нетребовательность к топливу, долговечность, бесшумность, плавность хода, отсутствие необходимости поддерживать обороты на холостом ходу и т. п. Паровые машины устанавливаются даже на лимузины.[5]
Однако попытка реанимации идеи паровой машины не удалась: отчасти из-за начавшейся Второй мировой войны, отчасти из-за сформировавшегося у потребителя стереотипа устарелости, громоздкости, грязности и опасности паровой машины, интерес к этим опытам ослабевает. Дольше всего паровая машина продержалась на железнодорожном транспорте, где новые модели паровозов выпускались вплоть до 1950-х годов. Но и здесь постепенно была вытеснена тепловозами, электровозами и газотурбовозами.
Тем не менее идея её не забыта и некоторые экспериментальные работы, и даже попытки серийного производства паровых машин высокого давления, ведутся энтузиастами и в наши дни. Большую ценность представляют так же действующие модели исторических паровых машин, изготавливаемые любителями.
Следует отметить, что распространение парового двигателя шло постепенно: механизмы, использующие водную и ветряную энергию, ещё долго конкурировали с паровыми машинами. В частности, до 1870 года в Соединённых Штатах большинство фабрик использовали энергию водяных турбин, а не паровых двигателей[6]. Точно так же постепенно она выходила из употребления. Так, последние паровозы работали на линиях ещё в конце XX века, а некоторые сохраняются работоспособными до наших дней, несмотря даже на то, что КПД паровозной машины один из самых низких. До сих пор именно паровозы и пароходы окутаны неким ореолом романтики. В некоторых странах они и сегодня используются в туристических целях.
Что касается паровых турбин, то они заняли прочные позиции в энергетике и крупном транспортном машиностроении. Однако их КПД сильно зависит от размеров, поэтому паровые турбины малой мощности экономически нецелесообразны и не находят применения в качестве основной силовой установки. В новых разработках транспорта с паровой машиной они используются как вспомогательные приводы, работающие на возвратном пару.
Классификация
Паровые машины разделяются:
- по способу действия пара на машины с расширением и без него, причём первые считаются наиболее экономичными
- по используемому пару
- низкого давления (до 12 кг/см²)
- среднего давления (12—60 кг/см²)
- высокого давления (свыше 60 кг/см²)
- по числу оборотов вала
- тихоходные (до 50 об/мин, как на колёсных пароходах)
- быстроходные.
- по давлению выпускаемого пара
- на конденсационные (давление в конденсаторе 0,1—0,2 ата)
- выхлопные (с давлением 1,1—1,2 ата)
- теплофикационные с отбором пара на нагревательные цели или для паровых турбин давлением от 1,2 ата до 60 ата в зависимости от назначения отбора (отопление, регенерация, технологические процессы, срабатывание высоких перепадов в предвключённых паровых турбинах).
- По расположению цилиндров
- горизонтальные
- наклонные
- вертикальные
- по числу цилиндров
- одноцилиндровые
- многоцилиндровые
- сдвоенные, строенные и т. д., в которых каждый цилиндр питается свежим паром
- паровые машины многократного расширения, в которых пар последовательно расширяется в 2, 3, 4 цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр через т. н. ресиверы (коллекторы).
По типу передаточного механизма паровые машины многократного расширения делятся на тандем-машины и компаунд-машины. Особую группу составляют прямоточные паровые машины, в которых выпуск пара из полости цилиндра осуществляется кромкой поршня.
По их применению: на стационарные машины и нестационарные (в том числе передвижные), устанавливаемые на различные типы транспортных средств.
Стационарные паровые машины могут быть разделены на два типа по режиму использования:
- Машины с переменным режимом, к которым относятся машины транспортных средств, строительно-дорожных машин, металлопрокатных станов, паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения;
- Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях, а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.
Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.
Паровые машины с возвратно-поступательным движением
Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.
Вакуумные машины
Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «Курс экспериментальной философии» (1744), которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель Ньюкомена, установленный приблизительно в 1714 году в угольной шахте Гриф в Уоркшире.Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными» или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов, во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.
Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос под нагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращает поршень к верхней части цилиндра силой гравитации. Так происходит обратный ход. Давление пара низкое и не может противодействовать движению поршня.[7]
Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.
версия паровой машины, созданная УаттомВ паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.
Вакуумные паровые машины, несмотря на очевидные ограничения их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века. Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.
Корнуэльская машина, построенная Тревитиком.Приблизительно в 1811 году Ричард Тревитик усовершенствовал машину Уатта. Давление пара над поршнем достигло 275 кПа (2,8 атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, был существенно усовершенствован конденсатор. Такие машины получили название корнуэльских[en], и строились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня. Некоторые из корнуэльских машин имели весьма большой размер.
Паровые машины высокого давления
В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказывая давление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться в атмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит в том, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся. Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу, что позволяло увеличить тягу котла.
Важность увеличения давления пара состоит в том, что при этом он приобретает более высокую температуру. Таким образом, паровая машина высокого давления работает при большей разнице температур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокого давления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всех возвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десятки раз выше.
Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше при заданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая паровая машина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах. Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие и пассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.
Паровые машины двойного действия
Следующим важным шагом в развитии паровых машин высокого давления стало изобретение в 1782 году Джеймсом Уаттом машины двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара, но обратно он возвращался или под действием гравитации, или за счёт момента инерции вращающегося маховика, соединённого с паровой машиной.
В паровых машинах двойного действия свежий пар поочерёдно подаётся в обе стороны рабочего цилиндра, в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Это потребовало создания достаточно сложного механизма парораспределения. Принцип двойного действия повышает скорость работы машины и улучшает плавность хода.
Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штоку крепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределения приводится в действие другим кривошипным механизмом. Механизм парораспределения может иметь функцию реверса для того, чтобы можно было менять направление вращения маховика машины.
Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того, может работать с намного более лёгким маховиком. Это уменьшает вес и стоимость машин.
Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, что хорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипы устанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины при любом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровую машину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвой точке, то есть в таком положении, при котором запуск машины невозможен.
В 1832 году впервые в России на заводе была построена паровая машина с кривошипно-шатунным механизмом для военного парохода «Геркулес» (строитель парохода — английский кораблестроитель на русской службе В. Ф. Стокке). Это была первая в мире удачная для пароходов паровая машина без балансира в 240 сил[8]. Англичане дважды, в 1822 и 1826 годах, делали попытку изготовить такие машины для своих пароходов, но они оказались неудачными и их пришлось заменить обычными балансирными машинами. Лишь на пароходе «Горгон» (Gorgon), спущенном на воду в 1837 году, они смогли установить машину прямого действия (без балансира), которая стала работать нормально.[8]
Парораспределение
Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действияВ большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз — впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа.
Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия.
В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.[9][10]
Сжатие
Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку», замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.
Опережение
Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвое пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.[11]
Простое расширение
Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.
Компаунд
В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.
Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал «Компаундную паровую машину высокого давления Вульфа». В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.
Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.
Двухцилиндровые компаундные машины могут быть классифицированы как:
- перекрёстный компаунд — цилиндры расположены рядом, их паропроводящие каналы перекрещены.
- тандемный компаунд — цилиндры располагаются последовательно, и используют один шток.
- угловой компаунд — цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.
После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте. Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.[12]
Тандемные компаунд цилиндры и поршни-клапаны. 1907Множественное расширение
Упрощённая схема паровой машины с тройным расширением. Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет). Паровой двигатель тройного расширения. 1890-еЛогичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.
Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.
Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.
Прямоточные паровые машины
Прямоточная паровая машинаПрямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности.
Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.
Прямоточные паровые машины бывают как одиночного, так и двойного действия.
Паровые турбины
Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подаётся на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подаётся. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).
Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.
Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится турбогенераторами, которые приводятся во вращение паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.
Другие типы паровых двигателей
Кроме поршневых паровых машин, в XIX веке активно использовались роторные паровые машины. В России, во второй половине XIX века они назывались «коловратные машины». Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского[13]. Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена.
Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фа
Принцип работы четырехтактного бензинового двигателя
Двигатель внутреннего сгорания назван так потому, что топливо сжигается непосредственно внутри самого двигателя. Большинство автомобильных двигателей работают по 4-тактному циклу. Цикл — это одна полная последовательность из 4 ходов поршня в цилиндре. Рабочий цикл четырехтактного бензинового двигателя включает: такт впуска (впускной клапан открывается), такт сжатия (оба клапана закрыты), рабочий ход (оба клапана закрыты), такт выпуска (выпускной клапан открыт).
Чтобы описать полный цикл, предположим, что поршень находится в верхней точке хода (верхняя мертвая точка), а впускной и выпускной клапаны закрыты. Когда поршень движется вниз, впускной клапан открывается и всасывает топливо в цилиндр. Это называется тактом впуска (впуска). Достигнув нижнего положения (нижней мертвой точки), поршень начинает двигаться вверх в закрытую верхнюю часть цилиндра (впускной клапан закрывается, и смесь сжимается поднимающимся поршнем.Это называется тактом сжатия. Когда поршень снова достигает верхней мертвой точки, свечи зажигания воспламеняют смесь, при этом оба клапана закрываются во время ее сгорания. В результате горения смеси оба клапана закрываются при ее сгорании. В результате горения смесей газы расширяются, и большое давление заставляет поршень двигаться обратно по цилиндру. Этот ход называется рабочим ходом. Когда поршень достигает нижней точки своего хода, выпускной клапан открывается, давление сбрасывается, и поршень снова поднимается.Он пропускает сгоревший газ через выпускной клапан в атмосферу. Это называется тактом выпуска, который завершает цикл. Таким образом, поршень движется в цилиндре вниз (ход впуска), вверх (ход сжатия), вниз (рабочий ход), вверх (ход на выпуске).
Тепло, выделяемое топливом, преобразуется в работу, так что возвратно-поступательное движение поршней преобразуется во вращательное движение коленчатого вала посредством шатунов.
1 — впуск 2 — компрессия 3 — мощность 4 — выпуск .1. Принцип работы четырехтактного бензинового двигателя. |
1. впуск — 3. мощность
2. компрессия 4. выхлоп
Упражнения, которые нужно делать после прочтения текста
5.,,,,.
6..
1. Почему двигатель называется двигателем внутреннего сгорания?
2.Какой ход называется впускным?
3. Что такое ход сжатия?
4. Что происходит в цилиндре при рабочем ходе?
5. Что происходит на такте выпуска?
6. За счет чего возвратно-поступательное движение поршней преобразуется во вращательное движение коленчатого вала?
1. Называется так потому, что топливо (смесь) сгорает
а) непосредственно внутри двигателя;
б) вне двигателя.
2. Ход впуска называется так потому, что при движении вниз поршень
а) впускной клапан открывается для всасывания топлива в цилиндр;
б) впускной клапан закрыт и смесь сжимается.
3. Ход сжатия — ход ..
а) при открытии впускного клапана для всасывания топлива в цилиндр;
б) при закрытом впускном клапане и сжатии смеси.
4. На рабочий ход ..
а) свечи зажигания воспламеняют смесь, при ее сгорании оба клапана закрыты;
б) выпускной клапан открывается, и остаточный газ течет через выпускной клапан в атмосферу.
5. На такте выпуска …
а) свечи зажигания воспламеняют смесь, при ее сгорании оба клапана закрыты;
б) выпускной клапан открывается, и остаточный газ течет через выпускной клапан в атмосферу.
6. Готово …
а) с помощью поршней;
б) с помощью шатунов.
7.,.
1. Двигатель внутреннего сгорания назван так потому, что сжигается топливо
а) вне двигателя;
б) внутри двигателя.
2. На впускном ходу …………..
а) впускной клапан открывается;
б) впускной клапан закрыт;
в) впускной и выпускной клапаны закрыты.
3. На такте сжатия ………..
а). впускной клапан открывается;
б). Впускной клапан закрыт;
c). Впускной и выпускной клапаны закрыты.
4. На рабочий ход …….
а). Впускной клапан открывается;
б) впускной клапан закрыт;
в) впускной и выпускной клапаны закрыты.
5. На такте выпуска ………
а).выпускной клапан открывается;
б). Впускной клапан закрыт;
c). Впускной и выпускной клапаны закрыты.
8 . , г.
ДИАЛОГ Поиск неисправности
Ник: Питер, я знаю, что ты хороший водитель. Я бы хотел, чтобы у вас был
посмотрите на мою машину.
Питер: Что не так с твоей машиной?
Н .: Не знаю.
П.: Дай мне взглянуть. Когда вы проверяли вилки?
N .: Три дня назад. Я думал, что у меня закончилось топливо, но бак наполовину полон.
П .: Карбюратор в порядке, но двигатель пропускает зажигание. Я думаю
разрядился аккумулятор. Требуется подзарядка.
N .: Жаль.
П .: Не расстраивайтесь по этому поводу. Получение
не займет много времени Аккумуляторзаряжен.
N .: Вы действительно так думаете?
P .: Я в этом уверен. Советую смазать двигатель.
N .: Я последую вашему совету. Спасибо, Питер.
П .: Не говори, Ник. Мне очень жаль, что я не смог тебе помочь.
N .: Что ж, вы помогли мне найти вину. Большое спасибо. Прощай.
П .: Увидимся позже.
9 ., г.
1. -,.
-Позвольте мне найти неисправность.
-. ?
-Да, я. Я вожу уже пятнадцать лет. Может быть, у вас закончилось топливо?
-.
-Когда вы проверяли вилки?
-. .
-.
-Хорошая идея. Они отремонтируют машину.
2.-?
-Последний месяц. Двигатель сейчас в хорошем состоянии. Это было хорошо
смазанный.
-. . (Тормоза слабые.) (Аккумулятор разряжен.)
-Это легко сделать.
-.
3.-?
-Хочу подержанную машину. Не могли бы вы помочь мне?
-.
— Я слышал, что на 42-й улице продаются хорошие машины.
-..
-Хорошая идея. Если я выберу там машину, мне больше не придется беспокоиться.
-.
10 . , г.
ДИАЛОГ
В мастерской
Клиент: Добрый день! Вы можете помочь мне? Что-то не так с двигателем.
Мастер: Привет! Что с этим не так?
.: Не знаю. Не заводится.Может быть, поршни и клапаны неисправны.
М .: Посмотрим! Что ж, они совершенно правы.
С .: А насчет коленвала или электрических свечей зажигания. Я абсолютно ничего не знаю о рабочем цикле двигателя.
Минутку. Не волнуйтесь! Проверим все модули и то, как они работают вместе.
Дата: 13.12.2015; просмотр: 2479;
Как работает двигатель внутреннего сгорания? (с иллюстрациями)
Двигатель внутреннего сгорания используется для питания почти всех наземных транспортных средств, а также многих транспортных средств водного и воздушного базирования.В двигателе внутреннего сгорания топливо, такое как бензин, заполняет камеру, а затем воспламеняется от свечи зажигания, вызывая небольшой взрыв, который вызывает работу.
Свеча зажигания, часть двигателя внутреннего сгорания.Перегретый расширяющийся газ, создаваемый взрывом, толкает поршень, который приводит в движение коленчатый вал, обычно соединенный с осью.Ось соединена с колесами, которые поворачиваются для движения вперед транспортного средства, например автомобиля.
Цилиндры, которые соединены с коленчатым валом и приводят в движение его, зажигаются вверх и вниз за счет взрыва топливно-воздушной смеси в двигателе внутреннего сгорания.Вся сборка камеры, свечи зажигания, поршня, коленчатого вала и клапанов, пропускающих топливо и воздух, известна как цилиндр. В то время как в небольших приборах, таких как бензопилы, используется только один цилиндр, в автомобилях обычно используется от четырех до восьми. В исторических самолетах было 28 цилиндров, которые приводили в движение их пропеллеры.
Перегретый расширяющийся газ, создаваемый взрывом, толкает поршень, который приводит в движение коленчатый вал, обычно соединенный с осью.Двигатель внутреннего сгорания отличается от двигателей внешнего сгорания (например, паровых двигателей) тем, что энергия, вырабатываемая при сгорании топлива, эффективно содержится в цилиндре.В паровых двигателях топливо используется для преобразования воды в пар, который затем движется через механизм и обеспечивает работу. Для совершенствования двигателей внутреннего сгорания потребовалось некоторое время, поскольку цилиндр должен выдерживать износ многих тысяч взрывов в течение всего срока службы.
Хотя инженеры экспериментировали с автомобилями с различными типами двигателей с 18-го века, только в конце 19-го века немцы Daimler и Benz создали двигатели внутреннего сгорания, пригодные для массового производства и коммерциализации.Это положило начало современной эре двигателей внутреннего сгорания, используемых для самых разных целей. Широко используется уже более века, и может пройти некоторое время, прежде чем наши инженеры разработают новый стандарт двигателей для нашего множества машин.
Паровые двигатели — это тип двигателя внешнего сгорания.Принцип работы четырехтактного бензинового двигателя
Двигатель внутреннего сгорания назван так потому, что топливо сжигается непосредственно внутри самого двигателя. Большинство автомобильных двигателей работают по 4-тактному циклу. Цикл — это одна полная последовательность из 4 ходов поршня в цилиндре. Рабочий цикл четырехтактного бензинового двигателя включает: такт впуска (впускной клапан открывается), такт сжатия (оба клапана закрыты), рабочий ход (оба клапана закрыты), такт выпуска (выпускной клапан открыт).
Чтобы описать полный цикл, предположим, что поршень находится в верхней точке хода (верхняя мертвая точка), а впускной и выпускной клапаны закрыты. Когда поршень движется вниз, впускной клапан открывается и всасывает топливо в цилиндр. Это называется тактом впуска (впуска). Достигнув нижнего положения (нижней мертвой точки), поршень начинает двигаться вверх в закрытую верхнюю часть цилиндра (впускной клапан закрывается, и смесь сжимается поднимающимся поршнем.Это называется тактом сжатия. Когда поршень снова достигает верхней мертвой точки, свечи зажигания воспламеняют смесь, при этом оба клапана закрываются во время ее сгорания. В результате горения смеси оба клапана закрываются при ее сгорании. В результате горения смесей газы расширяются, и большое давление заставляет поршень двигаться обратно по цилиндру. Этот ход называется рабочим ходом. Когда поршень достигает нижней точки своего хода, выпускной клапан открывается, давление сбрасывается, и поршень снова поднимается.Он пропускает сгоревший газ через выпускной клапан в атмосферу. Это называется тактом выпуска, который завершает цикл. Таким образом, поршень движется в цилиндре вниз (ход впуска), вверх (ход сжатия), вниз (рабочий ход), вверх (ход на выпуске).
Тепло, выделяемое топливом, преобразуется в работу, так что возвратно-поступательное движение поршней преобразуется во вращательное движение коленчатого вала посредством шатунов.
1 — впуск 2 — компрессия 3 — мощность 4 — выпуск .1. Принцип работы четырехтактного бензинового двигателя. |
Сцепление
Муфта — фрикционное устройство. Он соединяет двигатель с шестернями в коробке передач. Он используется для отключения двигателя от коробки передач, для запуска автомобиля и для снятия двигателя с колес автомобиля.
Муфта закреплена между маховиком двигателя и шестерней , коробка и состоит из двух пластин (дисков): фрикционного диска и нажимного диска.Фрикционный диск расположен между маховиком и нажимным диском и имеет износостойкий материал с каждой стороны.
Основное действие сцепления — это сила трения, действующая между двумя дисками. Сцепление управляется педалью сцепления. Когда педаль находится в состоянии покоя, сцепление включено, и работающий двигатель соединен с коробкой передач. Когда педаль нажата, сцепление выключается, и двигатель работает на холостом ходу.
Тормоза
Тормоза используются для замедления или остановки автомобиля там, где это необходимо.Это один из важнейших механизмов автомобиля по состоянию на его собственный
.зависит безопасность пассажиров. Автомобильные тормоза можно разделить на два типа, а именно: барабанные и дисковые. Барабанный тип может быть либо ленточным, либо колодочным. В зависимости от функции автомобиль имеет ножной тормоз и ручной тормоз (стояночный тормоз). По принципу действия тормоза классифицируются как: механические тормоза, гидравлические тормоза, воздушные тормоза, электрические тормоза.Тормоза управляются педалью тормоза.
Большинство используемых сегодня тормозных систем — гидравлические. Эта система состоит из главного цилиндра, установленного на раме автомобиля, и колесных цилиндров. Когда водитель нажимает на педаль тормоза, поршень перемещается в главном цилиндре, и тормозная жидкость подается от 11 к колесным цилиндрам. Движение поршня заставляет тормозные колодки двигаться и тормозить (тормозные колодки прижимаются к тормозным барабанам).
Пневматический тормоз использует сжатый воздух для приложения тормозного усилия к тормозным колодкам.
В электрических тормозах используются электромагниты для обеспечения тормозного усилия тормозных колодок.
Раньше тормоза применялись только на двух задних колесах, но теперь все автомобили оснащены тормозами на все колеса. Сегодня много доработок вносят в тормоза.
. 3. Тормозная система
:
Процесс сгорания в двигателе с искровым зажиганием с системой двойного впрыска
1.Введение
В настоящее время впрыск является основным решением подачи топлива в двигатели с искровым зажиганием (SI). Системы впрыска топлива отличались разным местом подачи топлива в двигатель. Независимо от сложности системы управления, можно выделить следующие типы систем впрыска топлива:
впрыск перед дроссельной заслонкой, общий для всех цилиндров — называется впрыск дроссельной заслонки — TBI или одноточечный впрыск — SPI (Рисунок 1 a),
впрыск в отдельные впускные каналы каждого цилиндра — называется Port Fuel Injection — PFI или Multipoint Injection — MPI (Рисунок 1 b),
впрыск непосредственно в каждого цилиндра, с прямым впрыском — DI (рис. 1 c).
Рисунок 1.
Системы впрыска топлива [1]: а) одноточечный впрыск, б) многоточечный впрыск, в) прямой впрыск; 1 — Подача топлива, 2 — Воздухозаборник, 3 — Дроссель, 4 — Впускной коллектор, 5 — Топливная форсунка (или форсунки), 6 — Двигатель
1.1. Историческая справка о применении систем впрыска топлива в двигателях SI
История применения впрыска топлива для двигателей с искровым зажиганием в качестве альтернативы ненадежным карбюраторам восходит к рубежу 19 и 20 веков.Первая попытка применения системы впрыска топлива для двигателя с искровым зажиганием была предпринята в 1898 году, когда компания Deutz использовала топливный насос ползункового типа в своем стационарном двигателе, работающем на керосине. Также систему подачи топлива первого самолета братьев Райт с 1903 года можно узнать как простую, гравитационную, систему впрыска бензина [2]. Внедрение сопла Вентури в карбюратор в последующие годы и различные технологические и материальные проблемы привели к тому, что разработка систем впрыска топлива в двигателях с искровым зажиганием снизилась на два следующих десятилетия.Желание получить лучшее соотношение мощности и рабочего объема, чем значение, полученное с карбюратором, привело к возврату к концепции впрыска топлива. Это привело к тому, что первые двигатели с впрыском бензина использовались в качестве движущей силы транспортных средств перед Второй мировой войной и . В авиационной промышленности разработка систем непосредственного впрыска топлива происходила незадолго до и во время Второй мировой войны и , в основном благодаря компании Bosch, которая с 1912 года проводила исследования в области топливного насоса высокого давления.Первым в мире SI-двигателем с непосредственным впрыском считается силовой агрегат Junkers Jumo 210G, разработанный в середине 30-х годов прошлого века и использованный в 1937 году в одной из модификаций истребителя Messerschmitt Bf-109 [3].
После Второй мировой войны были предприняты попытки использовать впрыск топлива в двухтактные двигатели для уменьшения потерь топлива в процессе продувки цилиндров. Двухтактные двигатели с искровым зажиганием с механическим впрыском топлива в цилиндр применялись в немецких малолитражках Borgward Goliath GP700 и Gutbrod Superior 600, выпускавшихся в 50-х годах 20 века, но без особого успеха.Четырехтактный двигатель с непосредственным впрыском бензина впервые стал серийным в спортивном автомобиле Mercedes-Benz 300 SL в 1955 году [4]. Динамичное развитие автомобильной промышленности в последующие годы привело к тому, что проблема загрязнения окружающей среды автотранспортными средствами стала приоритетной. В сочетании с развитием электронных систем и снижением их стоимости это привело к отказу от карбюратора как основного устройства в системе подачи топлива двигателя SI в пользу систем впрыска.Изначально системы впрыска представляли собой упрощенные устройства на базе аналоговой электроники либо с механическим или механико-гидравлическим управлением. В последующие годы вошли в употребление более совершенные цифровые системы впрыска. В настоящее время система впрыска объединена с системой зажигания в одном устройстве, а также управляет вспомогательными системами, такими как изменение фаз газораспределения и рециркуляция выхлопных газов. Электронный блок управления двигателем объединен в сеть с другими модулями управления, такими как ABS, антипробуксовочная система и электронная программа стабилизации.Это необходимо для согласования работы вышеуказанных систем.
Последнее десятилетие 20-го века можно считать окончательным закатом карбюратора, устройства, которое около 100 лет доминировало в топливных системах для двигателей с искровым зажиганием. Также было прекращено производство топливных систем с непрерывным впрыском. Из-за последовательного введения все более строгих стандартов на выбросы выхлопных газов центральные системы впрыска должны были уступить место системам многоточечного впрыска даже в самых маленьких двигателях транспортных средств.В конце 90-х на рынке снова появились автомобили с искровым зажиганием и непосредственным впрыском топлива. Это наиболее точный способ подачи топлива. Важное преимущество прямого впрыска состоит в том, что испарение топлива происходит только в объеме цилиндра, что приводит к охлаждению заряда и, как следствие, увеличению объемного КПД цилиндра [5]. В 1996 году японская компания Mitsubishi начала производство двигателя 4G93 GDI объемом 1,8 л для модели Carisma.Новый двигатель имел на 10% больше мощности и крутящего момента и на 20% меньший расход топлива по сравнению с ранее использовавшимся двигателем с системой многоточечного впрыска. На рис.2 представлено поперечное сечение цилиндра двигателя GDI с вертикальным впускным каналом и вид поршня с головкой с характерной чашей.
Рисунок 2.
Характерные особенности двигателя Mitsubishi GDI 4G93 [6]: а) поперечное сечение цилиндра с заметным движением всасываемого воздуха; б) Поршень с чашей в короне
В последующие годы другие автомобильные концерны начали применять различные двигатели SI с непосредственным впрыском бензина.Здесь следует упомянуть двигатели D4 Toyota, FSI Volkswagen, HPi Peugeot — группа Citroën, SCi Ford, IDE Renault, CGi Daimler-Benz или JTS Alfa Romeo. Процесс образования однородной и слоистой смеси в двигателе FSI представлен на рисунке 3.
Рисунок 3.
Формирование слоистой и однородной смеси в двигателе FSI (Audi AG)
В 2005 году система впрыска D-4S был представлен Toyota Corporation. Эта система впрыска объединяет функции систем MPI и DI.Для него характерно наличие двух форсунок на каждый цилиндр двигателя. Внедрение такой сложной системы впрыска дает увеличение производительности двигателя и снижение расхода топлива по сравнению с двигателями с обоими типами подачи топлива: многоточечной системой и системой прямого впрыска.
1.2. Система двойного впрыска Toyota D-4S
В августе 2005 года Toyota внедрила инновационную систему впрыска топлива в атмосферный двигатель 2GR-FSE, используемый в спортивном седане Lexus IS350 [7].Этот двигатель отличается очень хорошими характеристиками, умеренным расходом топлива и очень низким уровнем выбросов выхлопных газов. На рынке США Lexus IS350 квалифицируется как автомобиль со сверхвысоким уровнем выбросов [8]. Особенностью двигателя 2GR-FSE является использование двух форсунок на каждый цилиндр. Один из них подает топливо в цилиндр, а второй подает его в соответствующий впускной канал. Расположение форсунок в двигателе показано на рисунке 4.
Рисунок 4.
Поперечное сечение головки блока цилиндров двигателя 2GR-FSE [9]: 1 — топливная форсунка, 2 — форсунка прямого действия
Доля топлива x DI , подаваемого непосредственно в камеру сгорания, во всей массе топлива зависит от частоты вращения и нагрузки двигателя.При частичной нагрузке масса топлива разделяется на две топливные системы таким образом, что не менее 30% топлива впрыскивается напрямую, что защищает форсунки прямого действия от перегрева.
На основании анализа процесса сгорания установлено, что для частичной нагрузки двухточечный (на один цилиндр) впрыск топлива вызывает более благоприятное распределение соотношения воздух-топливо в объеме цилиндра, чем в случае, когда вся масса топлива впрыскивается во впускной трубопровод или непосредственно в цилиндр [10].Смесь более однородная. Только вокруг электродов свечи зажигания он немного обогащается по стехиометрическому составу, что сокращает период индукции и положительно влияет на процесс сгорания. На рисунке 5 показаны результаты измерений распространения фронта пламени в камере сгорания 21 ионизационным датчиком для непрямого впрыска (x DI = 0), прямого впрыска (x DI = 1) и 30% массы топлива. впрыскивается непосредственно в цилиндр (x DI = 0.3).
Рисунок 5.
Распространение фронта пламени для различных долей xDI массы топлива, впрыснутого в цилиндр
На Рисунке 6 график доли x DI массы топлива, впрыснутой непосредственно в цилиндр для была представлена вся карта двигателя 2GR-FSE.
Рисунок 6.
Массовая доля топлива, впрыскиваемого непосредственно в цилиндр для двигателя 2GR-FSE
Двигатель работает во всем диапазоне скоростей только с непосредственным впрыском топлива при низкой нагрузке, то есть примерно до 0.28 МПа BMEP (среднее эффективное давление в тормозной системе) и для частоты вращения двигателя выше 2800 об / мин, независимо от нагрузки двигателя. Как было сказано выше, в остальной части карты топливо разделено между двумя системами впрыска: прямым и многоточечным.
Применение такой сложной системы впрыска топлива, помимо улучшения кривой крутящего момента, снижает расход топлива двигателем. Карта расхода топлива двигателя 2GR-FSE с отмеченной точкой на наименьшем удельном расходе топлива представлена на рисунке 7.
Рисунок 7.
Карта расхода топлива 2GR-FSE
Анализируя рисунки 6 и 7, можно заметить, что область карты расхода топлива двигателя с наименьшим удельным расходом топлива, т.е. ≤ 230 г / кВтч, была получена с двойной впрыск топлива. Вышеуказанное значение удельного расхода топлива соответствует общему КПД двигателя, равному 0,356. На современном этапе развития двигателей внутреннего сгорания этот результат можно считать очень хорошим, тем более, что он был достигнут со стехиометрической смесью, без расслоения, свойственного двигателям, работающим на бедных смесях.Использование двух форсунок на цилиндр также позволило убрать дополнительную заслонку, закрывающую один из впускных каналов, используемых в системе Д-4 [11] для каждого цилиндра при работе двигателя на малых оборотах. Удаление заслонки также положительно сказывается на улучшении объемного КПД двигателя с системой двойного впрыска, особенно для более высоких оборотов при полностью открытой дроссельной заслонке.
Одним из компонентов системы D-4S, оказавших большое влияние на улучшение образования топливной смеси в цилиндре, был инжектор прямого впрыска топлива, образующий двойной веерообразный поток.Он был разработан специально для двигателя 2GR-FSE. Модификация формы форсунки для используемого двигателя 2GR-FSE имеет эффект повышения степени однородности смеси в цилиндре. Пример визуализации распределения воздушно-топливной смеси в поперечном сечении камеры сгорания, выполненной с помощью Star-CD v.3.150A-tool, показан на рисунке 8.
Рисунок 8.
Сравнение формирования смесь с использованием обычного инжектора и второго, разработанного для системы D-4S
Распределение соотношения воздух-топливо в камере сгорания для смеси, образованной инжектором нового типа, намного более выгодно.В этом случае заряд цилиндра неоднороден только на границе камеры сгорания. Вблизи электродов свечи зажигания нет нежелательных изменений в составе смеси.
Форсунка прямого действия имеет форсунку в виде двух прямоугольных отверстий размером 0,52 х 0,13 мм. Он работает при давлении от 4 до 13 МПа. Расход топлива при давлении 12 МПа составляет 948 см 3 в минуту. С другой стороны, в системе непрямого впрыска использовались форсунки с 12 отверстиями.Форсунки непрямого действия работают при давлении 0,4 МПа. При этом давлении его расход топлива равен 295 см 3 в минуту.
Таким образом, вопрос о двигателях с искровым зажиганием и системой двойного впрыска топлива очень интересен и, что не менее важно, очень актуален. Это происходит, в частности, из-за возможности снижения выбросов CO 2 и токсичных выхлопных газов в атмосферу с использованием топливных систем с двойным впрыском. Как следствие, авторы поставили задачу определить влияние применения топливной системы двойного впрыска на параметры работы двигателя с гораздо меньшим рабочим объемом, чем в случае двигателей массового производства.
Целью исследования было оценить влияние распределения топлива в системе подачи с двойным впрыском на ее характеристики и выбросы выхлопных газов для конкретных точек в рабочем диапазоне двигателя.
2. Объект исследования
В качестве объекта моделирования и экспериментальных исследований был выбран четырехтактный двигатель с искровым зажиганием типа 2SZ-FE производства Toyota для автомобиля Yaris. Основная часть проделанной работы — стендовые испытания.Имитационные исследования также проводились для понимания явлений, которые не могли быть определены в ходе экспериментальных исследований, например визуализация впрыска и сгорания или образования выбранных компонентов выхлопного газа. В таблице 1 приведены основные технические данные испытуемого двигателя.
Число цилиндров | четыре, рядные |
Камера сгорания | пятиклапанный тип, 4 клапана на цилиндр |
Рабочий объем V ss [дм 3 903 1.298 | |
Диаметр цилиндра x ход [мм] | 72,0 x 79,7 |
Степень сжатия | 10,0 |
Максимальная выходная мощность [кВт] при частоте вращения двигателя [об / мин] | 64, 6000 |
Максимальный крутящий момент [Нм] при частоте вращения двигателя [об / мин] | 122, 4200 |
Таблица 1.
Основные технические данные двигателя 2SZ-FE
По сравнению с оригинальным двигателем, этот двигатель был значительно переработан.Топливные форсунки высокого давления устанавливались в головку блока цилиндров двигателя, чтобы обеспечить впрыск топлива в камеры сгорания каждого цилиндра. Реализованные форсунки производства Bosch использовались, в частности, в двигателях FSI Volkswagen с непосредственным впрыском бензина. Форсунки устанавливались под углом 68 градусов к вертикальной оси цилиндра, т.е. параллельно оси впускного канала в точке крепления впускного коллектора. Расположение форсунок системы прямой и косвенной подачи топлива представлено на рисунке 9.
Рисунок 9.
Расположение форсунок прямой и косвенной подачи топлива; 1 — Поршень, 2 — Выпускной канал, 3 — Свеча зажигания, 4 — Выпускной клапан, 5 — Впускной клапан, 6 — Непрямая форсунка, 7 — Впускной канал, 8 — Прямая форсунка
Двигатель был установлен на испытательном стенде и соединен с вихретоковым дино. Динамометрический стенд имеет электронную систему измерения и контроля, которую можно подключить к ПК для упрощения сбора данных. Для достижения поставленных целей оригинальный блок управления двигателем был заменен системой управления, которую можно программировать в реальном времени.Такая система имеет возможность управлять системой зажигания, системой впрыска и различными другими системами. Важной особенностью системы является возможность независимого управления временем и синхронизацией впрыска для двух комплектов форсунок и работа в замкнутом контуре с широкополосным датчиком кислорода типа LSU 4.2. Другим устройством, используемым для управления инжектором высокого давления, был пиковый и фиксирующий драйвер, работающий при напряжении около 100 В. Общий вид испытательного стенда представлен на рисунке 10.
Рисунок 10.
Общий вид испытательного стенда [12]; 1 — Двигатель, 2 — ПК, 3 — Программируемая система управления двигателем, 4 — Цифровой осциллограф, 5 — ПК с системой сбора данных, 6 — Привод дроссельной заслонки, 7 — Расход топлива счетчик 8 — газоанализатор, 9 — топливный насос высокого давления, 10 — вихретоковый дино
Схема системы подачи топлива показана на рисунке 11. Система прямого и многоточечного впрыска была разделена на схеме. Система непрямого впрыска была отмечена синим цветом, система прямого впрыска — красным, а элементы, общие для обеих систем, — зеленым.Массовый расход топлива в прямом и косвенном контурах системы впрыска измерялся гравиметрическим расходомером.
Рисунок 11.
Схема топливной системы; 1 — Топливный бак, 2 — Запорный клапан, 3 — Топливный фильтр, 4 — Подкачивающий насос DI, 5 — Электроклапаны для измерения расхода топлива в DI-контуре, 6 — Регулятор низкого давления DI-контура, 7 — Высокое давление насос, 8 — Регулятор высокого давления DI-контура, 9 — Двигатель, 10 — Прямая топливная форсунка, 11 — Распределительная рампа прямых топливных форсунок, 12 — Непрямая топливная форсунка, 13 — Впускная труба, 14 — Распределительная рампа косвенной подачи топлива. топливные форсунки, 15 — манометр DI, 16 — топливный насос MPI, 17 — регулятор давления MPI-контура, 18 — расходомер топлива
3.Экспериментальные исследования
В данной работе представлены результаты испытаний двигателя, в ходе которых было изменено распределение топлива между системой прямого впрыска и системой распределенного впрыска.
Для каждого испытания поддерживались постоянные моменты впрыска и зажигания, а также стехиометрический состав смеси. Время прямого впрыска было определено в предварительных испытаниях при 281 ° CA перед ВМТ, что означает прямой впрыск топлива во время такта впуска. Также при предварительных испытаниях двигателя давление прямого впрыска топлива было установлено на уровне 8 МПа.Время впрыска для обеих систем подачи топлива было отрегулировано таким образом, чтобы поддерживать стехиометрический состав смеси при различных значениях доли топлива, впрыскиваемого непосредственно в цилиндр x DI .
3.1. Влияние применения системы двойного впрыска на производительность и расход топлива
На основе результатов вышеупомянутых испытаний кривые крутящего момента T и удельного расхода топлива на тормоз BSFC в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI .На рисунке 12 представлены аппроксимированные параболами кривые крутящего момента и удельного расхода топлива, полученные при открытии дроссельной заслонки 13% и частоте вращения двигателя 2000 об / мин.
Рис. 12.
Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 13% и частоты вращения двигателя 2000 об / мин
Для случая, показанного в этом Из рисунка видно, что максимальный крутящий момент и минимальный удельный расход топлива были получены для доли топлива, впрыснутой непосредственно в цилиндр x DI , равной почти 0.4. Результаты, полученные с таким распределением топлива между системой прямого впрыска и системой впрыска в порт, показывают значительные различия, особенно по сравнению с результатами испытаний, полученными, когда все количество топлива впрыскивается непосредственно в цилиндр.
Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI , полученные при 2000 об / мин и открытии дроссельной заслонки 20%, показаны на рисунке 13.
Рисунок 13.
Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 20% и частоты вращения двигателя 2000 об / мин
Для открытия дроссельной заслонки, равного 20% и частота вращения двигателя 2000 об / мин. Наилучшие результаты по удельному расходу топлива и крутящему моменту наблюдались при соотношении топлива, впрыскиваемом непосредственно в цилиндр, равном 0,62. В описанном случае указанные рабочие параметры двигателя получили существенное улучшение по сравнению с ситуацией, когда все количество топлива впрыскивается во впускные каналы.
На рисунке 14 показаны графики общего КПД двигателя и относительного увеличения общего КПД двигателя Δη DI + MPI для режима двойного впрыска по сравнению с работой с непрямым впрыском топлива, разработанные на основе результатов рисунков 12 и Рисунок 13. Кривые, показанные на рисунке 14, являются результатом параболической аппроксимации точек, полученных в результате расчетов.