Работа двигателя клапанов: Как работают клапана двигателя | RemRai


0
Categories : Разное

Содержание

Как работают клапана двигателя | RemRai

Клапан, который пропускает в цилиндр смесь воздуха и топлива, называется впускным. Клапан, через который отработанные газы покидают двигатель, называется выпускным. Для эффективной работы двигателя при любой скорости эти клапаны должны открываться в определенные моменты.

За этот процесс отвечают грушевидные детали (кулачки), которые крепятся к распределительному валу, вращающемуся под действием цепи, ремня или набора шестерен.

Распределительный вал может находиться в верхней части блока. В этом случае над каждым кулачком вала располагаются небольшие металлические цилиндры (толкатели). Когда конец толкателя упирается в коромысло, кулачок воздействует на ножку клапана, который удерживается в поднятом (закрытом) состоянии с помощью сильной пружины.

Двигатель с верхним расположением распределительного вала

Двигатель с верхним расположением распределительного вала

В подобной конструкции вал, расположенный в верхней части двигателя, работает под управлением ремня с внутренними зубьями, и контуры кулачков напрямую взаимодействует с толкателями, расположенными над клапанами.

Когда толкатель давит на кулачок, он задействует коромысло, которое ослабляет пружину и открывает клапан. При дальнейшем вращении контура пружина возвращается в первоначальное положение, и клапан закрывается. Такая конструкция характерна для двигателя с верхним расположением клапанов в головке цилиндра.

В некоторых двигателях отсутствуют толкатели, и клапаны открываются и закрываются с помощью двойных или одинарных распределительных валов.

Такая конструкция носит название двигателя с одним распределительным валом и клапанами в головке. В ней меньше подвижных частей, поэтому она является более мощной и может работать на высоких скоростях. В любом случае, между деталями присутствует зазор, чтобы клапан мог свободно закрываться и открываться, когда те расширяются при нагревании.

Зазоры между ножкой клапана и коромыслом или кулачком необходимы для нормальной работы системы, а их отсутствие может вызвать серьезные повреждения составных частей.

При слишком большом зазоре клапаны будут открываться слишком рано, а закрываться слишком поздно, что снизит мощность двигателя и увеличит уровень производимого им шума.

При малом зазоре клапаны не будут нормально закрываться, что приведет к ослаблению компрессии.

В некоторых двигателях зазоры регулируются автоматически под давлением смазочной жидкости.

Распределительный вал с толкателями

Распределительный вал с толкателями

При конструкции, согласно которой распределительный вал находится в блоке цилиндров, длинные штанги толкателей воздействуют на коромысла, открывающие клапаны. Двигатели с верхним расположением клапанов в головке цилиндра считаются менее эффективными, чем двигатели с одним распределительным валом и клапанами в головке, т.к. большое количество подвижных частей ограничивает скорость, при которой двигатель может безопасно работать.

В двигателе с верхним расположением распределительного вала и штангами коленчатый вал находится в головке цилиндров.

При вращении вала каждый клапан открывается с помощью толкателя, штанги и коромысла. Клапан удерживается в закрытом состоянии пружиной.

Количество зубьев на звездочке ведущей цепи в два раза превышает количество зубьев на шестерне распределительного вала, поэтому вал вращается в два раза медленнее, чем двигатель.

Двигатель с одним распределительным валом и клапанами в головке

Двигатель с одним распределительным валом и клапанами в головке

В некоторых моделях кулачки напрямую воздействуют на короткие рычаги, именуемые пальцами.

Двигатель с одним распределительным валом и клапанами в головке содержит меньше деталей для управления клапанами. Кулачки напрямую взаимодействуют с толкателями или короткими рычагами (пальцами), которые, в свою очередь, открывают и закрывают клапаны.

Такая система обладает меньшим весом и технической сложностью, т.к. в ней отсутствуют штанги толкателей и коромысла.

Для управления распределительным валом с помощью звездочки на коленчатом вале часто используется длинная цепь, которая иногда провисает. Эта проблема решается добавлением промежуточных звездочек и нескольких коротких цепей с большим натяжением.

Кроме того, могут быть использованы нерастягиваемые резиновые маслоупорные ремни с зубьями, которые цепляются к звездочкам на распределительном и коленчатом валах.

Как работают клапаны в двигателе?

Если Вы читали статью о работе двигателя, то знаете, что существует 4 такта работы мотора:

  1. впуск,
  2. сжатие,
  3. сгорание,
  4. выпуск.

В современных двигателях на каждый цилиндр приходится 4 клапана: два впускных и два выпускных — они работают попарно — т.е. два впускных клапана открываются одновременно и два выпускных одновременно (но отличное время от времени открытия впускных). Это контролируется распределительным валом. Во время такта впуска, когда цилиндр движется вниз, открывается пара впускных клапанов, чтобы смесь топлива и воздуха могла впрыснуться в камеру сгорания цилиндра. Затем клапан закрывается, цилиндр движется уже наверх, и, следовательно, происходит сжатие смеси. Когда цилиндр достигает верхней точки, происходит взрыв этой смеси (инициируемый свечой в бензиновых двигателях и крайней степенью сжатия в дизельных). Теперь цилиндр из-за возникшего по причине взрыва давления движется вниз, а, когда достигает крайней нижней точки, открывается пара выпускных клапанов, чтобы были выдавлены цилиндром отработавшие газы, когда тот снова начнёт двигаться вверх.

Ничего сложного, не правда ли? Но из чего состоит цепочка работы клапанов, откуда они знают, когда им открываться и закрываться. Увы и ах, но в эру умнейших компьютеров, эта операция контролируется всего лишь какими-то грушевидными отростками на валу, который приводится во вращения от коленчатого вала двигателя. Этот вал называется распределительным или распредвалом в обиходе.

К распредвалу идёт ремень или цепь ГРМ, которая имеет зубцы и предназначен для очень точной передачи оборотов коленчатого вала (который приводится в движение цилиндрами двигателя) распредвалу. На самом распредвале расположены так называемые

кулачки, яйцевидные «отростки» на валу, которые и толкают клапаны в нужный момент. И вот как это выглядит:

Распределительный вал, установленный в блоке цилиндров, имеет мелкие металлические нажимные цилиндры (кулачки), расположенные выше самого клапана и металлического толкателя, который находится между клапаном и кулачком. Когда распредвал крутится, крутятся и кулачки, и когда выступающая их часть поворачивается вниз, то она толкает толкатель, который передаёт толчок клапану, который и открывается. А когда кулачок перестаёт нажимать на толкатель, пружина клапана позволяет ему подняться обратно вверх, чтобы закрыться. Это называется подвесной системой клапанов (OHV).

Клапан двигателя. Назначение, устройство, конструкция

Это деталь двигателя и одновременно крайнее звено газораспределительного механизма. Клапанная группа включает в себя: пружину, направляющую втулку, седло, механизм крепления пружины. Все эти детали работают в тяжёлых механических и тепловых условиях, испытывая колоссальные нагрузки.

Сопряжение седло-клапан, подвергается наибольшему воздействию высоких температур и ударных нагрузок. Кроме того, детали постоянно испытывают недостаток в смазке по причине высоких скоростей работы. Это вызывает их интенсивный износ.

Требования, предъявляемые к группе:

  • Герметичность работы клапана в сопряжении с седлом;
  • Высокий коэффициент обтекаемости, при входе и выходе рабочей смеси из камеры сгорания;
  • Небольшой вес деталей группы;
  • Детали должны быть высокопрочными и одновременно жёсткими;
  • Стойкость к высоким температурам;
  • Эффективная теплоотдача клапанов;
  • Высокое сопротивление механическим и ударным нагрузкам;
  • Противодействие коррозии.

Работа клапанов двигателя

Назначение и особенности устройства

Назначение клапана, открывать и закрывать отверстия в головке блока цилиндров для выпуска отработанных газов либо впуска новой рабочей смеси. К основным элементам детали относятся головка и стержень. Переход от стержня к головке служит для плавного отвода газов, чем он плавней, тем лучше будет наполнение, либо очистка камеры сгорания.

Отработанные газы, выходя из камеры сгорания, создают сильное избыточное давление, а чем меньше площадь тарелки клапана, тем меньшие нагрузки он испытывает, вот почему выпускной клапан двигателя делается меньшего диаметра, а требования к нему выше. Так, при работе, головка выпускного клапана нагревается до 800-900.°С на бензиновых двигателях и до 500-700°С на дизельных моторах, впускной, нагревается до 300°С.

Именно по этим причинам при изготовлении выпускных клапанов нужны сплавы и материалы, обладающие повышенной жаропрочностью и содержащие большое количество легирующих присадок. Клапана делают из 2-х частей: головку из жаростойкого материала, стержень из углеродистой стали. Для изготовления клапана ДВС эти заготовки сваривают и шлифуют.

Выпускные клапана, в месте контакта с цилиндром, покрывают твёрдым сплавом. Толщина сплава порядка 1,5-2,5 мм. Такое покрытие позволяет избежать коррозии.

По причине меньших нагрузок при изготовлении впускных клапанов используют хромистые или хромоникелевые стали со средним содержанием углерода. При вводе рабочей жидкости в камеру сгорания, топливо отводит часть температуры от клапана и его составляющих, из-за чего температурные перепады у него ниже.

На эффективность работы клапана большое влияние оказывает его форма. Чем более она обтекаемая, тем выше скорость входящего или выходящего заряда смеси. Чаще всего головку клапана делают плоской, для облегчения изготовления детали, удешевления её производства и сохранения жёсткости.

Однако, в двигателях, испытывающих повышенные нагрузки, например, форсированных, в связи со спецификой самого двигателя применяют впускные клапана с вогнутыми головками. Такое устройство уменьшает массу детали и инерционную силу, возникающую при работе.

Стыковка клапана с седлом осуществляется по тонкому ободку на поверхности головки цилиндров — фаске. Стандартный угол наклона фаски впускных клапанов составляет 45°, у выпускных 45° или 30°. При изготовлении головок цилиндра фаски шлифуют, а затем, при установке клапана, каждый притирают к седлу. Ширина ободка должна быть не менее 0,8мм.

Работа клапанов двигателя

Ободок не должен прерываться по всему периметру окружности тарелки клапана. Сочленение между клапаном и седлом нужно уплотнить наверняка, вот зачем угол фаски клапана, по наружной стороне фаски, делают меньше угла седла на 0,5-1°.

В некоторых двигателях, для большей сохранности изделия, применяют устройство принудительного вращения клапана. В процессе работы на фасках откладывается нагар, нарушается уплотнение, появляются механические повреждения, это резко снижает эффективность работы мотора. Проворачиваясь, клапан ДВС распределяет нагрузку равномерно по всей поверхности фаски и принудительно очищает ее.

После фаски головки, у клапана имеется специальный поясок, в виде цилиндра. Эта конструктивная особенность позволяет уберечь его от перегрева и обгорания, а так же делает головку более жёсткой. Кроме того, при притирке, диаметр клапана остаётся прежним.

Пружинное стопорное кольцо предотвращает падение клапана в камеру сгорания двигателя, в случае, если элементы крепления хвостовика поломаются.

При соприкосновении с кулачком распределительного вала, или коромыслом, торцы клапана подвергаются большим нагрузкам. Поэтому для предания им жёсткости и износостойкости, их закаливают, или надевают на них специальные колпачки из высокопрочных сплавов.

Впускные клапана снабжают специальными резиновыми маслосъёмными колпачками, для предотвращения попадания через зазор масла в камеру сгорания в период такта впуска.

Выпускные клапана, работая в экстремальных температурных режимах, могут заклинить в отверстии направляющей втулки. Что бы этого не произошло, их стержни делают меньшего диаметра вблизи головки, по сравнению с поверхностью на остальной длине.

Сухарики, удерживающие клапанные пружины, держатся за сам клапан при помощи крепления, обеспеченного выточками.

Диаметр стержня выпускных клапанов больше диаметра стержня впускных, головка клапана — меньше. Такой конструктивный приём позволяет отвести от клапана больше тепла и понизить его температуру. Однако этот приём увеличивает сопротивление потока газов, делая очистку камеры сгорания менее эффективной. При расчётах, этот параметр сложно узнать, поэтому им пренебрегают, считая давление при выпуске большим, чем давление при впуске, что компенсирует недостаток с лихвой.

Для увеличения эффекта охлаждения выпускного клапана внутри его делают пустотелым. Пустое пространство заполняют металлом с низкой температурой плавления, обычно жидким натрием. Нагреваясь от головки клапана, пары жидкого натрия поднимаются в верхнюю, боле холодную часть, забирая большую часть тепла с собой. Там они соприкасаются с менее нагретой частью стержня и отдают тепло ей.

Клапаны двигателя

Пружины клапана

Пружина работает в условиях больших нагрузок. Основная её задача заключается в создании надёжной и плотной стыковки клапана и седла. Испытывая нагрузки, пружина может сломаться, зачастую это происходит по причине вхождения её в резонанс. С целью предотвращения этого явления, витки пружины делают с переменным шагом.

Так же можно изготовить коническую или двойную пружину. Двойные пружины обладают дополнительным плюсом, так как наличие двух деталей повышает надёжность механизма и уменьшает общий размер пружин.

Дабы исключить возможность резонанса в двойной пружине, направление витков внутренней и внешней пружин делают разными. Так же это позволяет удержать обломки детали, в случае поломки пружины, осколки задержатся между витками.

Пружины для клапанов изготавливают из проволоки, материал которой — сталь. После придания формы, изделие закаляют и подвергают отпуску. Для повышения прочности, обдувают воздухом с добавлением абразивного материала.

Что бы избежать коррозии, пружины обрабатывают оксидом цинка или кадмия. Концы пружин шлифуют и придают им плоскую форму. Это делается для более эффективной фиксации торцов пружин со специальными неподвижными тарелками в блоке цилиндров. Тарелки изготавливают из стали с низким содержанием углерода, верхнюю тарелку фиксируют на клапане при помощи сухарика.

Втулки клапанов и их направляющие

Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.

Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.

Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.

Направляющие втулки клапанов

Выточки под клапана (седла)

Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.

Вставные седла удерживаются в головке путём запрессовки, или развальцовки.

Количество клапанов в двигателе

Когда речь заходит о клапанах, многие задаются вопросом: «сколько клапанов в двигателе должно быть?» Однозначного ответа нет, определить чёткое количество можно только изучив конструктивные особенности мотора. Учитывая, что в четырёхтактной силовой установке клапан осуществляет такты впуска и выпуска, значит минимальное количество на один цилиндр — два, один впускной и один выпускной.

Современные силовые установки наиболее часто используют конструкцию с четырьмя клапанами (двух впускных и двух выпускных) на каждый цилиндр. При открытии клапана в образовавшееся отверстие происходит заброс топливной смеси, или выход отработанных газов. Чем больше отверстие, тем эффективней будет наполнение или очистка. Соответственно коэффициент полезного действия мотора так же увеличится.

Увеличить отверстие за счёт увеличения тарелки клапана нельзя, поскольку её размер ограничен размером камеры сгорания. Поэтому для улучшения качества смесеобразования устанавливают большее количество клапанов на один цилиндр.

Встречаются схемы, в которых применяются два, три, и даже пять клапанов на цилиндр. Учитывая, что процесс наполнения более важен для работы двигателя, количество впускных клапанов в нечётных схемах всегда больше.

Как работают клапаны двигателя

Клапан, который пропускает в цилиндр смесь воздуха и топлива, называется впускным. Клапан, через который отработанные газы покидают двигатель, называется выпускным. Для эффективной работы двигателя при любой скорости эти клапаны должны открываться в определенные моменты.

За этот процесс отвечают грушевидные детали (кулачки), которые крепятся к распределительному валу, вращающемуся под действием цепи, ремня или набора шестерен.

Распределительный вал может находиться в верхней части блока. В этом случае над каждым кулачком вала располагаются небольшие металлические цилиндры (толкатели). Когда конец толкателя упирается в коромысло, кулачок воздействует на ножку клапана, который удерживается в поднятом (закрытом) состоянии с помощью сильной пружины.

Двигатель с верхним расположением распределительного вала

В подобной конструкции вал, расположенный в верхней части двигателя, работает под управлением ремня с внутренними зубьями, и контуры кулачков напрямую взаимодействует с толкателями, расположенными над клапанами.

Когда толкатель давит на кулачок, он задействует коромысло, которое ослабляет пружину и открывает клапан. При дальнейшем вращении контура пружина возвращается в первоначальное положение, и клапан закрывается. Такая конструкция характерна для двигателя с верхним расположением клапанов в головке цилиндра.

В некоторых двигателях отсутствуют толкатели, и клапаны открываются и закрываются с помощью двойных или одинарных распределительных валов.

Такая конструкция носит название двигателя с одним распределительным валом и клапанами в головке. В ней меньше подвижных частей, поэтому она является более мощной и может работать на высоких скоростях. В любом случае, между деталями присутствует зазор, чтобы клапан мог свободно закрываться и открываться, когда те расширяются при нагревании.

Зазоры между ножкой клапана и коромыслом или кулачком необходимы для нормальной работы системы, а их отсутствие может вызвать серьезные повреждения составных частей.

При слишком большом зазоре клапаны будут открываться слишком рано, а закрываться слишком поздно, что снизит мощность двигателя и увеличит уровень производимого им шума.

При малом зазоре клапаны не будут нормально закрываться, что приведет к ослаблению компрессии.

В некоторых двигателях зазоры регулируются автоматически под давлением смазочной жидкости.

Распределительный вал с толкателями

При конструкции, согласно которой распределительный вал находится в блоке цилиндров, длинные штанги толкателей воздействуют на коромысла, открывающие клапаны. Двигатели с верхним расположением клапанов в головке цилиндра считаются менее эффективными, чем двигатели с одним распределительным валом и клапанами в головке, т.к. большое количество подвижных частей ограничивает скорость, при которой двигатель может безопасно работать.

В двигателе с верхним расположением распределительного вала и штангами коленчатый вал находится в головке цилиндров.

При вращении вала каждый клапан открывается с помощью толкателя, штанги и коромысла. Клапан удерживается в закрытом состоянии пружиной.

Количество зубьев на звездочке ведущей цепи в два раза превышает количество зубьев на шестерне распределительного вала, поэтому вал вращается в два раза медленнее, чем двигатель.

Двигатель с одним распределительным валом и клапанами в головке

В некоторых моделях кулачки напрямую воздействуют на короткие рычаги, именуемые пальцами.

Двигатель с одним распределительным валом и клапанами в головке содержит меньше деталей для управления клапанами. Кулачки напрямую взаимодействуют с толкателями или короткими рычагами (пальцами), которые, в свою очередь, открывают и закрывают клапаны.

Такая система обладает меньшим весом и технической сложностью, т.к. в ней отсутствуют штанги толкателей и коромысла.

Для управления распределительным валом с помощью звездочки на коленчатом вале часто используется длинная цепь, которая иногда провисает. Эта проблема решается добавлением промежуточных звездочек и нескольких коротких цепей с большим натяжением.

Кроме того, могут быть использованы нерастягиваемые резиновые маслоупорные ремни с зубьями, которые цепляются к звездочкам на распределительном и коленчатом валах.

Клапан двигателя

Клапан – деталь газораспределительного механизма. Клапанный механизм (механизм привода клапанов) является составной частью газораспределительного механизма (ГРМ).

ГРМ бывает нижнеклапаннымм и верхнеклапаннымм. Современные силовые агрегаты повсеместно имеют верхнее расположение клапанов.

Клапан реализует прямую подачу в цилиндры определенной порции топливно-воздушной смеси или только воздуха, а также осуществляет выпуск отработавших газов. Четырехтактный двигатель внутреннего сгорания для нормальной работы требуется не менее двух клапанов на один цилиндр.

Клапаны бывают двух видов, что зависит от их прямой функции:

  • впускной клапан;
  • выпускной клапан;

Сегодня на современные моторы устанавливаются клапаны тарельчатого типа, которые имеют стержень. Устройство клапана включает в себя так называемую тарелку клапана. Наиболее распространенная конструкция ДВС получила клапаны, которые находятся в головке блока цилиндров (ГБЦ). То место, где клапан контактирует с ГБЦ, получило название седло клапана. Седло клапана ДВС стальное или чугунное, запрессовано в головку блока цилиндров.

Максимально качественное наполнение цилиндра двигателя топливно-воздушной смесью или воздухом  требует того, чтобы диаметр тарелки впускного клапана был больше, чем у выпускного клапана. Впускные и выпускные клапаны имеют определенные отличия по этой причине. Впускной клапан зачастую получает больший диаметр своей тарелки. Это сделано для того, чтобы улучшить  наполнение цилиндров топливно-воздушной смесью или только воздухом.

Что касается выпускного клапана, в увеличении диаметра его тарелки необходимость также присутствует. Это необходимо для лучшей очистки цилиндров от продуктов сгорания. Отметим, что размер тарелки впускного и выпускного клапанов ограничен размерами самой камеры сгорания, которая изготовлена в ГБЦ. Качественное наполнение цилиндров и очистка реализуются не путем увеличения диаметра тарелки одного клапана, а путем установки большего количества клапанов на один цилиндр.

Клапаны ДВС в процессе работы мотора испытывают серьезные механические и тепловые нагрузки. По этой причине их изготавливают из особых жаростойких и износостойких металлических сплавов. Кромка тарелки клапана может быть усиленной, иногда сама тарелка усиливается при помощи керамического напыления. Что касается стержня, то для впускного клапана предусмотрен цельнометаллический стержень. Выпускной клапан имеет полый стержень, дополнительно получает натриевое наполнение для улучшения охлаждения тарелки клапана.

Повышенное внимание уделяется вопросу охлаждения именно выпускных клапанов, особенно для производительных силовых агрегатов. Выпускные клапана подвержены тепловой нагрузке намного больше впускных. Как уже было сказано, клапаны в таких моторах имеют полый стержень, который внутри наполнен натрием. Такое решение является эффективным способом охлаждения. Указанный натрий при выходе мотора на рабочую температуру плавится внутри полого стержня клапана, а затем в расплавленном виде течет. Так осуществляется перенос избытков тепла от разогретой тарелки клапана к его стержню.

Место прилегания тарелки клапана к блоку называется фаской. Для того чтобы фаска не страдала от скопления нагара, а также было реализовано равномерное распределение тепла, в конструкции клапанного механизма используются решения для вращения (проворачивания) клапана в процессе работы ДВС.

Современное устройство наиболее распространенного двигателя предполагает схему с четырьмя клапанами, что означает наличие двух впускных и двух выпускных клапанов на каждый отдельный цилиндр. В момент открытия (клапан опускается) впускного клапана образуется кольцевой проход. Через этот проход между тарелкой клапана и седлом клапана в цилиндр попадает топливно-воздушная смесь или только воздух. От площади проходного сечения будет зависеть эффективность наполнения цилиндра, что далее влияет на показатели производительности при рабочем ходе поршня.

Могут также встречаться двухклапанные, трехклапанные и пятиклапанные схемы устройства ГРМ. В первом случае используется только один впускной и один выпускной клапан на цилиндр. Для трехклапанных схем характерно наличие двух впускных и одного выпускного клапана. Схема на пять клапанов означает, что стоят три впускных и два выпускных клапана. Количество клапанов на цилиндр зависит от общего размера камеры сгорания конкретного двигателя, реализации привода клапанов, степени форсировки мотора, а также ряда других факторов.

Открытие клапана реализовано при помощи нажатия на  клапанный стержень. За открытие отвечает привод клапана. Указанный привод обеспечивает передачу усилия от распределительного вала (распредвала). В современных двигателях используются две базовые схемы привода клапанов: привод посредством гидравлических толкателей клапана и реализация привода при помощи роликовых рычагов.

Закрытие клапана в процессе работы ДВС осуществляется при помощи специальной пружины определенной жесткости. Жесткость такой пружины должна быть ограниченной, чтобы не создавать больших ударных нагрузок на седла клапанов. Сила воздействия пружины заставляет тарелку клапана герметично перекрывать впускной или выпускной канал. Пружина клапана крепится на стержне посредством тарелки клапанной пружины и сухарей. Во время работы мотора, особенно под нагрузкой, могут возникать резонансные колебания на клапанах. Для устранения этого нюанса могут быть установлены сразу две клапанные пружины с разнонаправленными витками.

Жесткость таких пружин меньше по сравнению с решениями, которые получили только по одной пружиной. Использование двух пружин подразумевает то, что они навиты в разные стороны. Это сделано для предотвращения заклинивания клапана в результате поломки одной пружины. Так инженеры исключили риск попадания витков одной пружины клапана между витками другой. Для уменьшения трения клапанный механизм конструктивно имеет вышеупомянутые ролики (роликовый рычаг), которые находятся на толкателях и рычагах привода клапанов.

Читайте также

Как работает двигатель внутреннего сгорания

В данной статье мы расскажем об устройстве двигателя, его компонентах, о том, как они работают вместе, какие могут возникнуть неполадки и как увеличить производительность.

 
Содержание статьи
 

  1. Введение
  2. Внутреннее сгорание
  3. Устройство двигателя
  4. Неполадки двигателя
  5. Клапанный механизм и система зажигания двигателя
  6. Системы охлаждения, воздухозабора и запуска двигателя
  7. Читайте также » Системы смазки, подачи топлива, выхлопа и электросистема двигателя
  8. Увеличение мощности двигателя
  9. Часто задаваемые вопросы по двигателям
  10. Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
  11. Узнать больше
  12. Читайте также Статьи про все типы двигателей
 
 
Бензиновый автомобильный двигатель предназначен для преобразования энергии бензинового топлива для движения автомобиля. В настоящий момент самым простым способом привести автомобиль в движение является сгорание бензина в двигателе. В связи с тем, что двигатель автомобиля является двигателем внутреннего сгорания, сгорание топлива происходит внутри двигателя.
 
На заметку:
 
  • Существуют различные типы двигателей внутреннего сгорания. Каждый из них имеет свои преимущества и недостатки.
  • Также существуют и двигатели внешнего сгорания. Паровые двигатели в поездах старого образца и пароходах являются наглядным примером двигателей внешнего сгорания. В паровых двигателях топливо (уголь, дрова, масло и т.д.) сгорает вне двигателя для получения пара, который уже приводит двигатель в движение. Внутреннее сгорание является более эффективным (расход топлива на 1км значительно ниже) чем внешнее сгорание, помимо этого размеры двигателей внутреннего сгорания намного меньше двигателей внешнего сгорания. Именно поэтому нам не встречаются автомобили Ford или GM на паровых двигателях.
 
Внутреннее сгорание
 
Принцип работы любого поршневого двигателя внутреннего сгорания: Если поместить небольшой объем высокоэнергетического топлива (например, бензина) в небольшой закрытый сосуд и воспламенить, то в результате высвободится огромное количество энергии в виде расширяющегося газа. Этой энергии хватит для запуска картофелины на 1510м. В данном случае энергия используется для движения картофелины. Данную энергию можно использовать в более интересных целях. Например, если у Вас получится создать цикл, который позволит производить взрывы с частотой несколько сотен раз в минуту, и если Вам удастся эффективно использовать данную энергию, то Вы получите основную часть автомобильного двигателя!
 

 

Рисунок 1
 
На сегодняшний день практически во всех автомобилях используется так называемый четырехтактный цикл сгорания для преобразования энергии топлива в механическую энергию. Четырехтактный принцип работы также называют Цикл Отто, в честь Николауса Отто, который изобрел его в 1867г. Все четыре такта представлены на рисунке 1. Эти такты:
 

  • Такт впуска
  • Такт сжатия
  • Рабочий такт
  • Такт выпуска
 
На рисунке видно, что в картофельной пушке картофелина заменена устройством, которое называется поршень. При помощи шатуна поршень соединяется с коленчатым валом. При вращении коленвала создается эффект «перезарядки пушки». Во время цикла в двигателе происходят следующие процессы:
 
  1. Поршень начинает движение сверху, впускной клапан открывается, поршень движется вниз для наполнения цилиндра воздухом и бензином. Это такт впуска. На данном этапе для смеси топлива и воздуха требуется лишь небольшое количество бензина. (Часть 1 рисунка)
  2. Затем поршень движется вверх, сжимая топливно-воздушную смесь. Сжатие способствует более мощному взрыву. (Часть 2 рисунка)
  3. Как только поршень достигает верхней точки, срабатывает свеча зажигания, которая воспламеняет топливо. Происходит взрыв бензина, при этом поршень движется вниз. (Часть 3 рисунка)
  4. Как только поршень достигает нижней точки хода, открывается выпускной клапан для вывода продуктов сгорания по выхлопной трубе. (Часть 4 рисунка)
 
Теперь двигатель готов к началу следующего цикла, происходит впуск топлива и воздуха.
Обратите внимание, что движение, получаемое в результате работы двигателя внутреннего сгорания, является вращательным, в то время как движение, производимое картофельной пушкой — линейное (прямая линия). В двигателе линейное движение поршней переводится во вращательное движение при помощи коленвала. Вращательное движение идеально подходит для вращения колес автомобиля.
 
В следующем разделе мы предлагаем рассмотреть детали, которые обеспечивают работу двигателя, начиная с цилиндров.

 
 
Устройство двигателя
 
Цилиндр является самой важной частью двигателя, поршень совершает поступательные движения в цилиндре. Вышеописанный двигатель имеет один цилиндр. Такой двигатель типичен для газонокосилок, однако в автомобильные двигатели имеют более одного цилиндра (обычно четыре, шесть или восемь). В многоцилиндровых двигателях цилиндры расположены в одном из трех порядков: линейно, V-образно или оппозитно (т.н. двигатель с горизонтальными противолежащими цилиндрами или оппозитный двигатель).
 

Рисунок 2. Линейное расположение — Цилиндры расположены линейно в один ряд.
 

Рисунок 3. V-образное — Цилиндры расположены линейно в два ряда под углом друг к другу.
 

Рисунок 4. Оппозитное — Цилиндры расположены линейно в два ряда с противоположных сторон двигателя.
 
Говоря об управляемости, затратах на производство и характеристиках формы, необходимо отметить, что различные конфигурации имеют свои преимущества и недостатки. Благодаря этим преимуществам и недостаткам определенные типы двигателей подходят для определенных автомобилей.
 
Давайте более подробно рассмотрим основные детали двигателя.
 
Свеча зажигания
Свеча зажигания подает искру для воспламенения топливно-воздушной смеси, что обеспечивает процесс сгорания. Для правильной работы двигателя искра должна подаваться в строго определенный момент.
 
Клапаны
Впускной и выпускной клапаны открываются в определенный момент для впуска топлива и воздуха и выпуска выхлопа. Обратите внимание, что оба клапана закрыты во время тактов сжатия и сгорания для обеспечения герметичности камеры сгорания.
 
Поршень
Поршень — это металлическая деталь цилиндрической формы, которая движется вверх и вниз внутри цилиндра.
 
Поршневые кольца
Поршневые кольца обеспечивают скользящее уплотнение между внешней кромкой поршня и внутренней кромкой цилиндра. Кольца используются для двух целей:
 

  • Они препятствуют попаданию топливно-воздушной смеси в картер из камеры сгорания в процессе такта сжатия и рабочего такта.
  • Они препятствуют попаданию масла из картера в камеру сгорания, где оно может сгореть.
 
Большинство автомобилей, которые «жгут масло» и требуют его добавления каждые 1000 км, имеют старые двигатели, поршневые кольца которых уже не могут обеспечивать надлежащее уплотнение.
 
Шатун
Шатун соединяет поршень и коленвал. Он может вращаться с обеих сторон для изменения угла во время движения поршня и вращения коленвала.
 
Коленвал
Коленвал преобразует поступательное движение поршней во вращательное как рычаг «чертика из табакерки».
 
Картер
Картер окружает коленвал. В нем находится некоторое количество масла, которое собирается в нижней части картера (поддоне картера).
 
Далее мы узнаем о неполадках двигателя.

 

 
Неполадки двигателя
 
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
 
Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
 

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
 
Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
 
  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.
 
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
 
Регулярное техническое обслуживание может помочь избежать ремонта
 
Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
 
  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
 
Могут возникнуть и другие неполадки. Например:
 
  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.
 
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.

 
 
Клапанный механизм и система зажигания двигателя
 
Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.
 
Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.
 

Рисунок 5. Распредвал
 
В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана. Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».
 
Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».
 

 


Рисунок 6. Система зажигания
 
В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.

 
 
Системы охлаждения, воздухозабора и запуска двигателя
 
В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».

На схеме представлено соединение патрубков системы охлаждения
 
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.

 
Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
 
Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:
 

  • Любое собственное трение, вызванное поршневыми кольцами
  • Давление сжатия любого из цилиндров во время такта сжатия
  • Энергию, необходимую для открытия и закрытия клапанов распредвалом
  • А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.
 
В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
 
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).

 
Системы смазки, подачи топлива, выхлопа и электросистема двигателя
 
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.
 

  • При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
  • В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).
 
Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
 
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.
 

Выхлопная система автомобиля Porsche 911
 
Теперь, когда Вы уже кое-что знаете о том, что заливается в автомобиль, давайте рассмотрим, что же из него выходит. Выхлопная система состоит из выхлопной трубы и глушителя. Если глушитель не установлен, то Вы сможете услышать звуки тысяч небольших взрывов, доносящихся из выхлопной трубы. Глушитель заглушает эти звуки. Выхлопная система также включает в себя и каталитический дожигатель выхлопных газов. Для получения более подробной информации читайте статью «Как работает каталитический дожигатель выхлопных газов».
 
В большинстве современных автомобилей система понижения токсичности выхлопа состоит из каталитического дожигателя выхлопных газов, и набора датчиков и приводов и компьютера, который отслеживает и регулирует происходящие процессы. Например, каталитический дожигатель использует катализатор и кислород для сжигания неотработанного топлива и некоторых других химических веществ, содержащихся в выхлопе. Датчик кислорода отвечает за количество кислорода в выхлопе, достаточное для работы катализатора, при необходимости датчик производит дополнительную регулировку.
 
Что еще помимо бензина питает Ваш автомобиль? Электросистема состоит из аккумулятора и генератора. Генератор соединяется с двигателем при помощи ремня и генерирует ток для зарядки аккумулятора. Аккумулятор подает 12 вольт на все системы, которым требуется электропитание (система зажигания, радио, фары, стеклоочистители, электрические стеклоподъёмники и сиденья с электрическим приводом регулировки, компьютеры и т.д.).
 
Теперь, когда Вы все узнали про подсистемы двигателя, мы расскажем о том, как увеличить мощность двигателя.

 
 
Увеличение мощности двигателя
 
Прочитав данную статью, Вы увидите, что существует множество способов увеличения показателей Вашего двигателя. Производители автомобилей постоянно экспериментируют со следующими параметрами для увеличения мощности двигателя или снижения расхода топлива.
 
Увеличение рабочего объема — Большой рабочий объем способствует увеличению мощности, т.к. при каждом обороте двигателя сгорает больше топлива. Увеличить рабочий объем можно, установив большие или дополнительные цилиндры. Практика показывает, что не имеет смысла устанавливать более 12 цилиндров.
 
Увеличение степени сжатия — Увеличение степени сжатия способствует увеличению мощности. Однако, чем сильнее происходит сжатие топливно-воздушной смеси, тем выше вероятность ее самовозгорания (еще до срабатывания свечи зажигания). Высокооктановый бензин предотвращает раннее сгорание топлива. Именно по этой причине мощные автомобили необходимо заправлять высокооктановым бензином — в их двигателях используется более высокая степень сжатия для увеличения мощности.
Увеличение объема подаваемой смеси — При увеличении подачи воздуха (и, соответственно, топлива), не изменяя размер цилиндра, можно увеличить мощность (точно также, как при увеличении размера цилиндра). Турбокомпрессоры и компрессоры наддува повышают давление поступающего воздуха, благодаря чему в цилиндр можно подать больше воздуха. Для получения более подробной информации читайте статью «Как работает турбокомпрессор».
 
Охлаждение поступающего воздуха — При сжатии воздуха, его температура повышается. Поэтому лучше обеспечивать подачу более холодного воздуха в цилиндр, т.к. чем выше температура воздуха, тем меньше его расширение при сгорании. По этой причине во многих двигателях с наддувом и турбонаддувом используются охладители воздуха. Охладитель воздуха — это специальный радиатор, по которому сжатый воздух проходит для охлаждения перед подачей в цилиндр. Для получения более подробной информации читайте статью «Как работает система охлаждения».
 
Облегчение подачи воздуха  — При движении поршня вниз во время такта впуска, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух впускных клапанов на каждый цилиндр. В некоторых современных автомобилях используются полированные впускные коллекторы для снижения сопротивления воздуха. Установка больших воздушных фильтров также может улучшить подачу воздуха.
 
Облегчение выпуска выхлопа — При выпуске выхлопа из цилиндра, сопротивление воздуха может снизить мощность двигателя. Сопротивление воздуха может быть снижено благодаря установке двух выпускных клапанов на каждый цилиндр (автомобиль с двумя впускными и двумя выпускными клапанами имеет по четыре клапана на каждый цилиндр, что увеличивает мощность двигателя — когда Вы слышите рекламу автомобиля, в которой говорится, что у него 4 цилиндра и 16 клапанов, это означает, что в двигателе установлено по четыре клапана на каждый цилиндр). Если выхлопная труба слишком узкая или сопротивление воздуха в глушителе слишком высокое, то это может создать противодавление, что также снизит мощность. В высокоэффективных выхлопных системах используются выпускные коллекторы, широкие выхлопные трубы и глушители для предотвращения образования противодавления в выхлопной системе. Поэтому, когда Вы слышите, что в автомобиле установлена «раздельная система выпуска», это значит, что для улучшения выпуска отработанных газов используется две выхлопных трубы вместо одной.
 
Снижение массы — Чем легче детали, тем эффективнее работает двигатель. Каждый раз, когда поршень меняет направления движения, он затрачивает энергию на то, чтобы прекратить движение в одну сторону и начать в другую. Чем легче поршень, тем меньше энергии ему требуется.
 
Впрыск топлива — Система впрыска топлива обеспечивает очень точное дозирование топлива для каждого цилиндра. Благодаря этому увеличивается мощность и снижается расход топлива. Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
 
  
Часто задаваемые вопросы по двигателям
 
Ниже приведены наиболее часто задаваемые вопросы наших читателей, а также ответы на них:
 

  • Чем отличаются бензиновые и дизельные двигатели? В дизельных двигателях отсутствует свеча зажигания. Дизельное топливо подается в цилиндр, возгорание происходит под действием тепла и давления во время такта сжатия. Энергетическая плотность дизеля значительно выше, чем у бензина, поэтому дизельный двигатель рассчитан на больший пробег. Для получения более подробной информации читайте статью «Как работает дизельный двигатель».
 
  • Чем отличаются двухтактные и четырехтактные двигатели? В большинстве бензопил и лодочных моторов используются двухтактные двигатели. В двухтактном двигателе отсутствуют клапаны, а свеча зажигания дает искру каждый раз, когда поршень находится в верхней точке хода. Через отверстие в нижней части стенки цилиндра происходит впуск топлива и воздуха. Когда поршень движется вверх, сжимая смесь, свеча зажигания дает искру для начала процесса сгорания, отработанные газы выходят через другое отверстие в стенке цилиндра. В двухтактных двигателях необходимо смешивать масло с бензином, т.к. отверстия в стенках цилиндров не допускают использование уплотнительных колец для герметизации камеры сгорания. В общем, двухтактные двигатели являются достаточно мощными для своих размеров, т.к. в них на один поворот двигателя происходит в два раза больше циклов сгорания. Однако, двухтактный двигатель расходует больше бензина и сжигает большое количество масла, соответственно, он наносит больший вред экологии. Для получения более подробной информации читайте статью «Как работает двухтактный двигатель».
 
  • В этой статье Вы упоминали паровые двигатели — существуют ли какие-либо преимущества паровых двигателей или других двигателей внешнего сгорания? Единственное преимущество паровых двигателей заключается в том, что в качестве топлива можно использовать все, что горит. Например, в паровом двигателе в качестве топлива можно использовать уголь, газеты, дрова, в то время как для работы двигателя внутреннего сгорания требуется очищенное высококачественное жидкое или газообразное топливо. Для получения более подробной информации читайте статью «Как работает паровой двигатель».
 
  • Используются ли в автомобильных двигателях какие-либо другие циклы помимо цикла Отто? Как говорилось ранее, в двухтактных и дизельных двигателях используются другие циклы работы. В двигателе автомобиля Mazda Millenia используется модифицированный цикл Отто, который называется цикл Миллера. В газотурбинных двигателях используется цикл Брайтона. В дизельных ротационных двигателях Ванкеля используется цикл Отто, однако он происходит совершенно по-другому в отличие от четырехтактных поршневых двигателей.
 
  • Зачем нужно устанавливать восемь цилиндров? Почему нельзя установить один большой цилиндр с таким же рабочим объемом, как у восьми цилиндров? По ряду причин в 4.0л двигателе используется восемь цилиндров объемом пол-литра каждый, а не один большой 4-литровый цилиндр. Основная причина — это равномерность работы. V-образный восьмицилиндровый двигатель работает более равномерно, т.к. в нем происходит восемь взрывов с равными интервалами вместо одного сильного взрыва. Другая причина — это начальный крутящий момент. Когда Вы заводите V-образный восьмицилиндровый двигатель, Вам необходимы только два цилиндра (1л) во время их тактов сжатия, если использовать один большой цилиндр, то придется производить сжатие 4 литров.
 
Чем 4-цилиндровый двигатель отличается от V-образного шестицилиндрового двигателя?
 
Количество цилиндров в двигателе играет важную роль в его мощности. Каждый цилиндр имеет поршень, который движется внутри него, эти поршни соединены с коленвалом и вращают его. Чем больше используется поршней, тем больше происходит сгораний топлива в определенный момент времени. Это означает, что за меньшее время может быть выработано больше мощности.
 
4-цилиндровые двигатели обычно имеют «прямое» или «линейное» расположение цилиндров, в то время как в 6-цилиндровых двигателях используется более компактное V-образное расположение, поэтому они и называются V-образные 6-цилиндровые двигатели. Американские производители автомобилей остановили свой выбор на V-образных 6-цилиндровых двигателях, т.к. являются более мощными и тихими, оставаясь при этом достаточно легкими и компактными для установки в автомобили.
 

4-цилиндровый двигатель с линейным расположением цилиндров автомобиля Lotus Elise
 
Исторически сложилось так, что американские автовладельцы отвернулись от 4-цилиндровых двигателей, считая их медленными, слабыми, работающими неравномерно и дающими слабое ускорение. Однако, когда такие японские производители автомобилей, как Honda и Toyota стали устанавливать мощные 4-цилиндровые двигатели в 1980-х и 90-х, американцы по достоинству оценили эти компактные двигатели. Даже, несмотря на то, что такие японские автомобили, как Toyota Camry имели огромный успех по сравнению с  аналогичными моделями американских производителей, в США продолжался выпуск автомобилей с 6-цилиндровыми двигателями, т.к. считалось, что американцам необходимы мощные автомобили. На сегодняшний день, в связи с ростом цен на бензин и обострившейся экологической ситуацией, Детройт переходит на 4-цилиндровые двигатели благодаря их низкому расходу топлива и меньшим выбросам в атмосферу.
 

3,8л V-образный 6-цилиндровый двигатель с турбонаддувом автомобиля Nissan GT-R.
 
Что касается будущего 6-цилиндровых двигателей, то за последние годы были максимально устранены различия между 4-цилиндровыми и 6-цилиндровыми двигателями. Для того, чтобы соответствовать требованиям низкого расхода бензина и уровня выхлопных газов, производители приложили много усилий по улучшению работы 6-цилиндровых двигателей. Большинство современных автомобилей с 6-цилиндровыми двигателями соответствуют стандартам расхода топлива уровня выхлопов, установленных для компактных 4-цилиндровых двигателей. Таким образом, различия в эффективности и мощности этих двух типов двигателей ослабевают, и принятие решения о покупке 4-цилиндрового или 6-цилиндрового двигателя сводится к их стоимости. Что касается моделей автомобильных, доступных с обоими типами двигателей, конфигурация с 4-цилиндровым двигателем стоит дешевле до $1000 по сравнению с 6-цилиндровым. Таким образом, независимо от мощности автомобиля, 4-цилиндровый двигатель поможет Вам сэкономить.
 
И, напоследок: Не стоит пытаться установить 6-цилиндровый двигатель на автомобиль, в котором изначально стоял 4-цилиндровый. Переоборудование автомобиля с 4-цилиндровым двигателем для установки 6-цилиндрового может обойтись Вам дороже, чем покупка нового автомобиля.
 
 
Источник:  https://auto.howstuffworks.com/

Регулировка клапанов: что это, зачем нужно, и что будет, если ее не делать

Если вы становились свидетелем сцены, когда опытный автомобилист деловито открывал капот машины (вашей или своей), некоторое время вслушивался в звук работающего мотора, а потом многозначительно произносил фразу «клапаны надо отрегулировать», но при этом для вас его слова были не понятнее звука двигателя, который он слушал, то сегодня мы попробуем этот пробел восполнить. Что такое регулировка клапанов, зачем она нужна, когда ее нужно делать, и что будет, если ее не делать совсем? И почему на многих машинах регулировка клапанов вообще не нужна? Давайте разберемся.

Что такое регулировка клапанов?

Работа обычного поршневого двигателя предполагает подачу в цилиндры топливовоздушной смеси и отвод из них отработавших газов. Обе функции выполняют клапаны – соответственно, впускные и выпускные, попеременно открываясь в нужное время для наполнения и опорожнения цилиндра. Управляет их работой распределительный вал, имеющий специальные кулачки, которые воздействуют на верхнюю часть клапана, открывая его в цилиндр. Конструкций приводного механизма существует несколько – распредвал может воздействовать на клапаны почти непосредственно, надавливая кулачком на толкатели, или, к примеру, через специальные коромысла, толкая один их конец, в то время как другой давит на клапан. Но в любом из случаев в конструкции есть интересующая нас особенность: тепловой зазор между кулачком распредвала и деталью клапанного механизма, которая открывает клапан. Ведь рабочая температура деталей двигателя, особенно клапанного механизма и собственно клапанов, очень высока, а при нагревании металл имеет свойство расширяться, что приводит, в частности, к удлинению клапана. Именно для компенсации этого расширения нужен тепловой зазор, а регулировка этого зазора и называется «регулировкой клапанов»

Да, с логической точки зрения формулировка «регулировка клапанов» не совсем верна. Клапан при нормальных условиях, когда на него не давит кулачок распредвала, закрыт: тарелка клапана плотно прижата пружиной к седлу в головке блока цилиндров, а должная герметичность обеспечивается фасками на обоих элементах. Соответственно, никакая регулировка клапану здесь не требуется – а вот тепловой зазор должен быть правильным. То есть, более корректно говорить не «регулировка клапанов», а «регулировка теплового зазора привода клапанов».

Зачем нужна регулировка клапанов?

Если представить себе комбинацию «клапан – толкатель – распредвал» без теплового зазора – то есть, плотно прилегающими друг к другу при неработающем двигателе, то несложно понять, что при выходе на рабочую температуру на удлинившийся клапан, «вытягиваемый пружиной из цилиндра» в сторону распредвала, из-за температурного расширения начнет постоянно давить этот самый распредвал, приводя к небольшому сжатию пружины и неплотному закрытию клапана. То есть, при достижении рабочей температуры клапан фактически перестанет полноценно выполнять одну из своих функций: плотно закрываться для герметизации камеры сгорания и ее изоляции от впускного или выпускного тракта.

Подобное может произойти, к примеру, из-за износа седел и тарелок клапанов. Соответственно, в этом случае регулировка клапанов нужна, чтобы обеспечить нужный тепловой зазор для обеспечения полного закрытия клапанов.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Второй вариант – увеличение теплового зазора: например, из-за износа поверхностей кулачков распредвала и элементов привода клапанов. В этом случае даже после достижения двигателем рабочей температуры между распредвалом и клапанным механизмом будет оставаться зазор, а касаться они будут ударно и только в момент воздействия кулачка. Это уже пагубно влияет на ресурс клапанного механизма, но есть и другие последствия: клапан будет открываться чуть позже и не полностью – а значит, ухудшится наполняемость цилиндра топливовоздушной смесью.

Что будет, если не регулировать клапаны?

Если не регулировать клапаны своевременно, это приведет к изменению теплового зазора. При этом и увеличение, и уменьшение теплового зазора, как мы уже поняли, негативно влияет на ресурс и работу двигателя. Уменьшение зазора означает неполное закрытие клапанов, которое приводит к ряду последствий. Негерметичность камеры сгорания из-за приоткрытого клапана приводит к падению компрессии и прорыву раскаленных газов во впускной или выпускной тракт (в зависимости от того, впускной или выпускной клапан приоткрыт).

Кроме того, стоит отметить значительно увеличивающуюся тепловую нагрузку на клапаны. Ведь плотный контакт закрытого клапана с седлом – это одно из важных условий его охлаждения, а если клапан неплотно прилегает к седлу, охлаждение ощутимо ухудшается. Особенно это касается выпускных клапанов: впускные дополнительно охлаждаются поступающей в цилиндры топливовоздушной смесью, а вот выпускные обеспечивают выход отработавших газов крайне высокой температуры, и для них охлаждение в зоне контакта с седлом имеет критическую важность. В крайнем случае плохое охлаждение клапана из-за малого теплового зазора может привести к его перегреву и разрушению – так называемому прогару. Кроме того, прорыв горящей топливовоздушной смеси в выпускной тракт повышает нагрузку на катализатор (а при его разрушении абразивная пыль может повредить и цилиндры).

Последствия увеличения теплового зазора несколько иные. Как было сказано выше, оно приводит к ударному воздействию распредвала на клапанный механизм, что негативно сказывается на его ресурсе, а также к несвоевременному и неполному открытию клапана. Ухудшение наполнения цилиндра топливовоздушной смесью при этом означает нарушение фаз газораспределения и снижение отдачи мотора: то есть, он будет хуже тянуть.

Как узнать, каким должен быть тепловой зазор?

Величина теплового зазора определяется производителем для конкретного двигателя: если конструкция мотора предусматривает регулировку клапанов, показатели обычно указываются в руководстве по эксплуатации. — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

В целом величина теплового зазора, разумеется, очень невелика, это десятые доли миллиметра – примерно 0,1-0,4 мм. При этом ее обычно определяют с помощью набора щупов с шагом в 0,05 мм и менее – то есть, соблюдается точность до сотых. Стоит отметить, что тепловой зазор для впускных и выпускных клапанов различается: как мы уже знаем, выпускные клапаны нагреваются сильнее – а следовательно, сильнее увеличиваются в размерах и требуют большего теплового зазора.

На практике знать конкретные значения теплового зазора нужно только для регулировки – то есть, если вы не занимаетесь ей самостоятельно, эти цифры вам не слишком пригодятся.

Как узнать, когда регулировать клапаны

Периодичность регулировки клапанов, если она предусмотрена конструкцией мотора, указывается в руководстве по эксплуатации автомобиля. В целом эта процедура выполняется не так часто – обычно это каждые 50-80 тысяч километров. Однако и более частая проверка не повредит – особенно если машина оснащена газобаллонным оборудованием, так как газовое топливо повышает тепловую нагрузку на мотор.

Второй способ узнать о необходимости регулировки клапанов – это характерный звук: стук или цоканье при работе мотора, не проходящее по мере его прогрева.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Ну а если автомобиль приобретен не новым, и его пробег уже немаленький, то регулировка теплового зазора точно не будет лишней – нужно лишь выяснить, предусмотрена ли она конструкцией.

Как регулировать клапаны?

Существует несколько конструктивных вариантов регулировки теплового зазора. К примеру, один из вариантов – это подбор шайб нужной толщины, которые вставляются между толкателем клапана и кулачком распредвала. Для регулировки зазора он сначала замеряется с имеющейся шайбой, а потом шайба при необходимости заменяется на другую, большей или меньшей толщины. Альтернативный вариант при схожей конструкции – подборка не регулировочных шайб нужной толщины, а самих толкателей с необходимыми параметрами.

Еще одна вариация — это регулировка теплового зазора с помощью винтового механизма. В этом случае ничего подбирать не нужно: зазор измеряется щупом и затем при необходимости настраивается вкручиванием или выкручиванием регулировочного болта, который затем фиксируется контргайками — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Такой метод регулировки мы наглядно показывали в отдельном материале на примере Renault Logan.

Почему на некоторых моторах клапаны регулировать не нужно?

Неоднократное уточнение о том, что регулировка клапанов должна быть предусмотрена конструкцией мотора, весьма важно: ведь многие двигатели этой процедуры не требуют. Зависит это от того, оснащен ли мотор гидрокомпенсаторами: это устройства, предназначенные для автоматической регулировки теплового зазора. Они работают за счет масла, поступающего в них из двигателя (поэтому, собственно, и называются «гидрокомпенсаторами») и полностью исключают необходимость периодической ручной регулировки клапанов. Сами они, конечно же, тоже не вечны – о необходимости их проверки и замены говорит все тот же цокающий стук, не исчезающий вскоре после запуска, а порой даже после прогрева двигателя. Однако главное, что нужно знать в контексте этого материала – это то, что моторам, оснащенным гидрокомпенсаторами, регулировка клапанов не нужна.

Декодер клапана

: что вам пытаются сказать клапаны вашего двигателя?

В предыдущем посте мы показали вам , как читать свечи зажигания.

Теперь мы объясним, как читать клапаны вашего двигателя и компоненты, связанные с клапанами, и перевести то, что они вам говорят. Внешний вид впускных и выпускных клапанов может намекнуть на текущее рабочее состояние вашего двигателя и предсказать возможные проблемы с производительностью.

Вот что могут вам сказать ваши клапаны:

Carbon Углеродные отложения могут образовываться на ваших клапанах по нескольким причинам.

Часто нагар является результатом богатой топливной смеси. Это также может быть результатом прохождения масла через изношенную направляющую клапана. В этом случае масло вытягивается через направляющую впускного клапана в камеру сгорания, где оно сгорает. На выпускной стороне изношенная направляющая клапана может позволить маслу попасть в выпускной коллектор / коллектор, а часть масла может ударить по клапану и образовать отложения. Потеря компрессии, плохое сгорание из-за неисправного зажигания или работа холодного двигателя также могут вызвать образование отложений на выпускных клапанах.

Если вы видите нагар на своих клапанах, проверьте направляющие клапана на износ, убедитесь, что ваша система зажигания работает должным образом, и проверьте состояние богатой смеси. Если образуется слишком много отложений, ваши клапаны могут начать заклинивать, что приведет к перебоям в зажигании или сбоям в работе двигателя.

Broken Поломка клапана часто является результатом чрезмерного зазора клапана или взведенной пружины клапана или фиксатора, который смещает клапан в одну сторону при каждом ударе. Любое из этих условий может вызвать дополнительную нагрузку на клапан и привести к усталости металла.Замените клапан, а затем дважды проверьте зазор и клапанные зазоры.

Избыточный нагрев может вызвать растяжение клапана и выход из строя, поэтому проверьте систему охлаждения и найдите забитые каналы для охлаждающей жидкости вокруг седел клапана. Поломка также может быть побочным продуктом детонации или предварительного воспламенения. В этом случае вам потребуется повысить октановое число, отрегулировать угол зажигания и выполнить другие типичные регулировки, чтобы избежать этих условий.

Изгиб клапанов обычно происходит из-за контакта с поршнями.Это часто происходит из-за обрыва ремня / цепи ГРМ или неправильной установки нового ремня / цепи. Другие возможные подозрения включают слабые или сломанные пружины клапана (не забудьте обновить пружины, если вы модернизируете свой кулачок) и недостаточный зазор между поршнем и клапаном .

valve_burned Обычно проблема выпускного клапана , сгоревшие клапаны обычно возникают в результате утечки горячих газов сгорания между клапаном и седлом клапана, когда они не герметизируются должным образом. Адекватное уплотнение между ними также позволяет отводить тепло сгорания от клапана к седлу, предотвращая перегрев клапана.

Неправильный зазор клапана или слабая пружина клапана могут помешать правильной посадке клапана. Проблема может усугубляться неадекватной или плохо работающей системой охлаждения. Засоренные каналы для охлаждающей жидкости вокруг седел клапанов могут вызвать деформацию седла клапана и привести к перегреву / сгоранию клапанов. Детонация и преждевременное зажигание также могут вызвать повышение температуры сгорания и привести к сгоранию клапанов. Выполните все необходимые регулировки угла опережения зажигания, диапазона нагрева свечи зажигания и октанового числа топлива, чтобы предотвратить эти условия.

Еще одна причина сгоревших клапанов — выпадение седла клапана. В этом случае седло клапана постепенно изнашивается от камеры сгорания, изменяя зазор клапана. Если клапан больше не закрывается полностью, клапан и седло сгорают. Отложения нагара также могут помешать правильной установке клапана и привести к сгореванию клапана.

Другие возможные причины включают:

  • Обедненная топливно-воздушная смесь (отрегулировать соответственно)
  • Слишком маленький зазор клапанного механизма (проверить и отрегулировать)
  • Ослабленная направляющая клапана (при необходимости подтяните)
  • Взведены или ослаблены пружины клапана (проверить и отрегулировать)

Чрезмерный зазор в клапанном механизме может привести к сильному удару седла клапана, что приведет к износу поверхности клапана.Это также позволяет стучать по наконечнику клапана, что приводит к его выступу. Проверить все зазоры и произвести необходимые регулировки

Если чрезмерный износ клапанного механизма не является проблемой, износ поверхности клапана может быть результатом загрязнения клапана и седла. Вылечить можно так же просто, как очистить или заменить воздушный фильтр.

Это больше касается поведения клапана, чем внешнего вида; однако заедание клапана может указывать на наличие нагара на штоке клапана. Вероятно, это результат проблем, о которых мы упоминали выше: смола в топливе, чрезмерно богатая воздушно-топливная смесь, углерод от плохого сгорания или даже грязное масло.Если ваши клапаны заедают из-за отложений, сосредоточьтесь на этих областях.

Заедание клапанов также может быть просто побочным продуктом работы в холодную погоду. В этом случае клапаны часто будут работать свободно по мере прогрева двигателя. Другие возможные причины заедания клапанов:

  • Изношенные направляющие клапана (см. Сгоревшие клапаны выше)
  • Деформация штока клапана (обычно в результате перегрева)
  • Недостаточно масла (долить масло)

Правильная диагностика клапанов двигателя может помочь вашему двигателю достичь максимальной производительности, повысить топливную экономичность и продлить срок службы.

Автор: Дэвид Фуллер Дэвид Фуллер — управляющий редактор OnAllCylinders. За свою 20-летнюю карьеру в автомобильной промышленности он освещал множество гонок, шоу и отраслевых мероприятий, а также написал статьи для нескольких журналов. Он также сотрудничал с ведущими и отраслевыми изданиями по широкому кругу редакционных проектов. В 2012 году он помог основать OnAllCylinders, где ему нравится освещать все аспекты хот-роддинга и гонок..

Работа парового двигателя — Как работают паровые двигатели

На следующей диаграмме показаны основные компоненты поршневого парового двигателя . Такой двигатель типичен для паровоза.

Показанный двигатель представляет собой паровой двигатель двойного действия , поскольку клапан позволяет пару высокого давления попеременно воздействовать на обе стороны поршня. Следующая анимация показывает двигатель в действии.

Объявление

Вы можете видеть, что золотниковый клапан отвечает за пропускание пара высокого давления в обе стороны цилиндра.Шток управления для клапана обычно зацепляется за рычажный механизм, прикрепленный к траверсе , так что движение траверсы также перемещает клапан. (На паровозе эта тяга также позволяет машинисту включить задний ход.)

На этой диаграмме видно, что отработанный пар просто выходит в воздух. Этот факт объясняет две вещи о паровозах:

  • Это объясняет, почему они должны брать воду на станции — вода постоянно теряется из-за выхода пара.
  • Это объясняет, откуда исходит звук «чу-чу». Когда клапан открывает цилиндр, чтобы выпустить пар, пар выходит под большим давлением и издает «чух!» звук при выходе. Когда поезд трогается с места, поршень движется очень медленно, но затем, когда поезд начинает катиться, поршень набирает скорость. Эффект от этого — «Чу… чу… чу… чу чу-чу-чу», который мы слышим, когда он начинает двигаться.

На паровозе крейцкопф обычно соединяется с приводной штангой , а оттуда — с соединительной штангой , которая приводит в движение колеса локомотива.Расположение часто выглядит примерно так:

Этот контент несовместим с этим устройством.

На этой схеме траверса соединена с приводной штангой, которая соединяется с одним из трех ведущих колес поезда. Три колеса соединены соединительными тягами, поэтому они вращаются в унисон.

.Клапан

PCV — Как это работает — Признаки отказа

Система принудительной вентиляции картера — (PCV) — для чего она нужна

Знание того, как на самом деле работает клапан PCV, является первым шагом в диагностике неисправности или неисправности клапана.

Когда ваш двигатель работает, происходят тысячи мощных взрывов для высвобождения энергии топлива; выделяет высокотоксичные и вредные газы.

Следовательно, в 1961 году для решения этой проблемы была представлена ​​система клапанов PCV.

В результате, эта простая система контроля выбросов использует вакуум двигателя для вытягивания картерных газов из картера; толкая их вниз по впускному коллектору и обратно в камеры сгорания, где они подвергаются повторному сжиганию.

Как это работает — признаки неисправности — способы проверки системы

Итак, после каждого процесса сгорания выпускной клапан направляет эти газы в выхлопную систему; где каталитический нейтрализатор превращает их в гораздо менее токсичные пары, прежде чем выпустить их в атмосферу.

Тем не менее, небольшое количество газов из камер сгорания попадает в картер двигателя; за счет утечки давления между поршневыми кольцами и стенкой цилиндра.

Следовательно, оставленные сами по себе, эти пары и пары нанесут вред вашему двигателю. Прочные газы содержат углеводороды (несгоревшее топливо), окись углерода (частично сгоревшее топливо), твердые частицы, воду, серу и кислоту.

Кроме того, вместе эти вещества разъедают любой металлический компонент двигателя, к которому они прикасаются, разбавляют моторное масло, накапливают вредный осадок, который ускоряет износ деталей, и закупоривают небольшие проходы и шланги.

Признаки неисправности клапана PCV

Вы не понимаете, насколько важна система PCV для благополучия вашего двигателя, пока не поймете, как вышел из строя клапан PCV; или любая часть этой системы; нарушает работу двигателя и внутренних компонентов.

Основные операции при различных условиях двигателя

Итак, неисправный клапан PCV или связанный с ним компонент может вызвать ряд симптомов. Например, если клапан застревает в закрытом положении или забивается; вы заметите один или несколько из этих симптомов:

  • Повышение внутреннего давления в двигателе
  • Отказ одного или нескольких сальников или прокладок
  • Утечка моторного масла
  • Накопление влаги и шлама внутри двигателя
  • Скачки двигателя и, возможно, черный дым

Аналогичным образом, если клапан PCV застрял в открытом положении или системный шланг отсоединился или разорвался; создание утечки вакуума; вы заметите один или несколько из этих симптомов:

  • Пропуски зажигания на холостом ходу
  • Обедненная топливовоздушная смесь
  • Наличие моторного масла в клапане или шланге PCV
  • Повышенный расход масла
  • Жесткий запуск двигателя
  • Неровная работа двигателя на холостом ходу

Кроме того, застрявший в открытом положении клапан PCV может вызвать срабатывание световой сигнализации «Проверьте двигатель» из-за увеличения потока воздуха.

Застрявший в открытом положении клапан PCV может вызвать срабатывание индикатора «Проверьте двигатель»

Однако диагностический компьютер может указать на неисправность датчика массового расхода воздуха или кислорода; что затрудняет выявление реального источника проблемы.

Испытания клапана PCV

К сожалению, многие производители автомобилей не строго относятся к обслуживанию системы PCV. В результате некоторые предлагают обслуживать систему каждые 20 000 или 50 000 миль. Однако более частая проверка системы помогает предотвратить дорогостоящий ремонт и обеспечить бесперебойную работу двигателя.

Система принудительной вентиляции картера — (PCV)

Итак, для начала проверки системы PCV в вашем автомобиле; сначала найдите клапан PCV и связанные с ним компоненты. Кроме того, в зависимости от вашей конкретной модели, вы можете найти клапан на резиновой втулке на крышке клапана; на отверстии сапуна вокруг впускного коллектора; или сбоку от блока цилиндров.

Имейте в виду, что некоторые новые модели вообще не имеют клапана PCV; вместо; вы найдете простой вакуумный шланг, идущий от крышки клапана к воздуховоду.У других может быть простой ограничитель. Еще можно проверить ограничитель, шланги и другие комплектующие.

Кроме того, если вы не знакомы с системой PCV в вашем автомобиле; или не могу найти клапан; купите руководство по обслуживанию для вашей конкретной марки и модели автомобиля в местном магазине автозапчастей.

Рабочий расход клапана PCV

К счастью, для проверки системы не требуется много времени:

  1. Проверить детали системы PCV. Резиновые детали, такие как втулки, уплотнительные кольца и шланги, разбухают, становятся твердыми и хрупкими после постоянного воздействия высоких температур.Они начинают протекать. При необходимости замените один или несколько из этих компонентов.
  2. Осторожно отсоедините клапан и все шланги системы и осмотрите их. Если вы обнаружите, что шланги заполнены слизью, очистите их растворителем или разбавителем для лака и замените клапан. Или просто замените эти компоненты вместе с клапаном PCV.
  3. Во многих моделях двигателей используется простой и недорогой клапан, и многие автовладельцы просто заменяют его через каждые межсервисные интервалы. Другие клапаны содержат нагревательные элементы и стоят дороже.Независимо от типа клапана PCV, который используется в вашем двигателе; всегда покупайте качественную фирменную арматуру; так как он, скорее всего, будет иметь более точную калибровку для вашей конкретной модели двигателя.
  4. На некоторых двигателях вы найдете сетчатый фильтр под клапаном. Некоторые производители автомобилей рекомендуют заменять фильтр каждые 30 000 миль или около того.
  5. Большинство автомобилей оснащены клапаном, который представляет собой не что иное, как подпружиненное устройство. После снятия клапана встряхните его рукой. Вы услышите погремушку.Если вы этого не сделаете, пора заменить клапан. Однако, если клапан дребезжит; и ваш двигатель испытывает один или несколько симптомов неисправности клапана PCV, описанных выше; это хорошая идея — заменить клапан.
Помимо визуального осмотра состояния различных клапанов PCV и связанных с ними компонентов; проверить систему во время работы двигателя.

Проверка клапана PCV на вакуум

1- Запустите двигатель и дайте ему поработать около двадцати минут, чтобы он прогрелся до рабочей температуры.

2- Затем откройте капот и отсоедините клапан от крышки клапана; и заблокируйте конец клапана пальцем.

Заблокируйте конец клапана пальцем.

3 — Вы почувствуете вакуум, исходящий от системы, всасывающей кончиками пальцев; и обратите внимание на кратковременное падение холостого хода примерно с 40 до 80 об / мин.

4- Если вы заметили более сильное падение оборотов и уменьшение холостого хода двигателя; ваш (PCV) клапан может застрять в открытом положении.

5- Если вы не чувствуете разрежение на кончике пальца, проверьте клапан и шланги на предмет мусора, препятствующего потоку воздуха.

6- Наконец, очистите клапан PCV и шланги разбавителем для лака и, при необходимости, тонкой щеткой для шлангов.

Альтернативные методы испытаний клапана PCV

  • Еще один способ проверки вакуума — зажать или заблокировать вакуумный шланг, подключенный к клапану PCV. Скорость холостого хода упадет от 40 до 80 об / мин, а затем вернется к норме. В противном случае ищите заблокированный или ограниченный вакуумный шланг или клапан.
  • На некоторых двигателях доступ к клапану PCV затруднен.В этих моделях можно вынуть щуп для измерения уровня моторного масла; и заклейте отверстие трубки масляного щупа куском ленты.
  • При работающем двигателе на холостом ходу снимите крышку маслозаливной горловины на клапанной крышке. Затем накройте отверстие тонким листом картона.
  • Подождите около минуты. Вы заметите, что вакуум всасывает и прижимает бумагу к отверстию. В противном случае в системе есть утечка или система засорена. Проверьте состояние шлангов, шланговых соединений и втулки.
Диагностическая карта PCV

Заключение

Следовательно, иногда симптомы плохого клапана PCV маскируются под плохой датчик. Следовательно, вот почему так важно регулярно проверять клапан PCV и связанные с ним компоненты.

В заключение, большинство клапанов PCV и связанных с ними компонентов стоят недорого и сэкономят вам деньги на дорогостоящий ремонт; если вы замените их с рекомендованным интервалом.

Поделитесь новостями портала DannysEngine

.

Эксплуатация судовых двигателей — запуск, работа, останов

Для различных типов главных двигателей судов важно проводить надлежащие проверки, принимать необходимые меры предосторожности и поддерживать параметры для безотказной работы. Хорошее несение вахты и техническое обслуживание приводят к более высокой эффективности, меньшему количеству поломок и бесперебойной работе. В этой статье мы рассмотрим некоторые общие и наиболее важные моменты для всех типов главных двигателей.

Подготовка к запуску главного двигателя судна

Перед запуском главного двигателя необходимо выполнить следующие проверки и процедуры.

Все компоненты, которые были отремонтированы, подлежат проверке и, по возможности, «функциональному тестированию». Все оборудование, инструменты и ветошь, использованные при капитальном ремонте, необходимо снять с двигателя.

1. Воздушные системы

a) Слейте всю воду, присутствующую в системе пускового воздуха
b) Слейте всю воду, имеющуюся из системы управляющего воздуха на ресиверах
c) Создайте избыточное давление в воздушных системах и убедитесь, что давление правильное.
d) Убедитесь в наличии сжатого воздуха в выпускной клапан закрывающий цилиндры «пневматическая пружина»

Прочтите по теме: 8 вещей, которые морские инженеры должны знать о запуске воздушной системы на корабле

2.Системы смазочные

a) Проверьте уровень масла в картере главного двигателя и долейте при необходимости.
b) Запустите насос LO главного двигателя и насос LO турбокомпрессора
c) Убедитесь, что все давления масла в норме.
d) Обеспечьте достаточный поток масла для Охлаждение поршней и турбокомпрессоры
e) Проверьте уровень масла в баке LO цилиндра и что подача к масленке открыта. Проверьте работу расходомера масла в цилиндре и обратите внимание на счетчик расходомера

.

Marine Engine Lubrication

Marine Engine Lubrication

Связанное чтение: Объяснение судовой системы смазки главного двигателя

3.Системы водяного охлаждения

a) Убедитесь, что рубашки главного двигателя находятся в нормальных условиях, вода рубашки главного двигателя непрерывно циркулирует через подогреватель во время пребывания в порту и никогда не остывает.
b) Убедитесь, что давление в системе охлаждающей воды правильное и что системы не протекают. Проверка должна быть сделана еще раз, когда двигатель прогрет до правильной рабочей температуры.
c) Проверьте уровень расширительного бачка. Явное снижение уровня воды в расширительном бачке свидетельствует о протечке.

Fresh water Expansion Tank Fresh water Expansion Tank

Расширительный бак низкотемпературного контура

Прочтите по теме: Общий обзор центральной системы охлаждения на кораблях

4. Медленное вращение двигателя поворотным механизмом

Медленно проворачивайте двигатель, чтобы предотвратить повреждение, вызванное утечкой жидкости в любой из цилиндров. Прежде чем включать двигатель, необходимо получить разрешение с моста. Предварительная смазка должна быть проведена. Всегда выполняйте медленное вращение в самый последний момент перед запуском.

a) Убедитесь, что ручки регулировки находятся в положении «ЗАВЕРШЕНО С ДВИГАТЕЛЯМИ».
b) Убедитесь, что все краны индикатора цилиндра открыты.
c) Проверните двигатель на один оборот с помощью поворотного механизма. Проверьте, не вытекает ли жидкость из любого из контрольных клапанов
d) Отключите поворотный механизм и убедитесь, что он заблокирован в ВЫКЛЮЧЕННОМ положении
e) Убедитесь, что контрольная лампа TURNING GEAR ENGAGED гаснет

По теме Прочтите: Как защищен морской силовой двигатель корабля?

5.Медленное включение двигателя пусковым воздухом (продувка)

Перед включением двигателя необходимо получить разрешение на мосту. У моста нужно спросить зазор пропеллера. Всегда выполняйте медленный поворот в самый последний момент перед запуском и в течение последних 30 минут. Переведите главный двигатель в режим ожидания.

a) Выберите МЕДЛЕННЫЙ ПОВОРОТ на панели управления главным двигателем, если таковой имеется, или дайте толчок из поста управления двигателем, на мгновение переместив регулирующую рукоятку в полностью медленное положение.Управляя телеграфом от управления двигателем, связывайтесь с мостиком, они должны следовать вашей команде по телеграфу. По мере того как двигатель вращается, проверьте, не вытекает ли жидкость из кранов индикатора

.

b) Когда двигатель сделает один оборот, переместите регулирующую рукоятку обратно в положение СТОП.

c) Закройте все краны индикаторов. Также закройте сток турбокомпрессора

6. Топливная система

a) Проверьте насос подачи жидкого топлива и циркуляционный насос жидкого топлива.Если двигатель при остановке работал на мазуте, циркуляционный насос и подогреватели топлива должны продолжать работать.
b) Проверьте давление и температуру жидкого топлива. Проверьте работу расходомеров мазута и отметьте счетчик расходомера

.

Связанное чтение: Расчеты расхода мазута для судов

7. Разное

a) Проверьте правильность показаний всех приборов двигателя.Если нет, проверьте приборы и при необходимости замените
b) Убедитесь, что все сливы в ресивере продувочного воздуха и дренаже коробки открыты, а контрольные краны закрыты.
c) Убедитесь, что система верхнего крепления двигателя находится в рабочем состоянии
d) Проверьте усилие температура подшипника и давление смазочного масла в пределах допустимого. Проверьте гаситель осевых колебаний и гаситель крутильных колебаний, давление смазочного масла находится в диапазоне
e) Убедитесь, что сигнализация утечки топлива работает. Проверьте уровень утечки топлива из бака, чтобы заметить любое повышение уровня позже из-за утечки
f) Проверьте уровень сливного сливного бака, бак не должен быть полным, иначе это приведет к переполнению промывных пространств главного двигателя
г) Проверить исправность регулятора

2 stroke marine engine 2 stroke marine engine

Проверки нормальной работы

  • Во время нормальной работы необходимо проводить регулярные проверки и принимать меры предосторожности
  • Регулярные проверки давления и температуры в системе и двигателе
  • Значения, считываемые приборами, в сравнении с данными, приведенными в протоколах ввода в эксплуатацию, с учетом частоты вращения и / или мощности двигателя, обеспечивают отличные данные для оценки характеристик двигателя.Сравните температуру, прощупывая трубы. Важными показателями являются положение индикатора нагрузки, частота вращения турбокомпрессора, давление наддувочного воздуха и температура выхлопных газов перед турбиной. Ценным критерием также является суточный расход топлива с учетом более низкой теплотворной способности
  • Проверьте и сравните между цилиндрами среднее указанное давление, давление сжатия и максимальное давление сгорания

Связанное чтение: Общие сведения об индикаторной диаграмме и различных типах недостатков индикаторной диаграммы

  • Проверить работу детектора масляного тумана
  • Проверьте правильность положения всех запорных клапанов в системах охлаждения и смазки.Клапаны впускных и выпускных отверстий для охлаждения на каждом двигателе должны всегда быть полностью открытыми во время работы. Они служат только для отключения отдельных цилиндров от контура охлаждающей воды при капитальном ремонте
  • При обнаружении аномально высоких или низких температур на выходе воды, температуру необходимо очень постепенно доводить до предписанного нормального значения. Резкие перепады температуры могут вызвать повреждение
  • Максимально допустимая температура выхлопных газов на входе в турбокомпрессор не должна быть превышена
  • Проверьте горение по цвету выхлопных газов

Связанное чтение: Что делать, когда черный дым выходит из воронки судна в порту?

  • Поддерживайте правильную температуру наддувочного воздуха после воздухоохладителя при нормальном потоке воды.Как правило, более высокая температура наддувочного воздуха приводит к уменьшению количества кислорода в цилиндре, что, в свою очередь, приводит к более высокому расходу топлива и более высокой температуре выхлопных газов
  • Проверьте падение давления наддувочного воздуха в воздушных фильтрах и воздухоохладителях. Чрезмерное сопротивление приведет к нехватке воздуха в двигателях

Связанное чтение: Как судовая система наддува воздуха для двигателей изменилась с течением времени

  • Топливо перед использованием необходимо тщательно отфильтровать.Регулярно открывайте сливные краны всех топливных баков и топливных масляных фильтров на короткий период, чтобы слить всю воду или шлам, которые могли там скопиться. Поддерживайте правильное давление жидкого топлива на входе в топливные насосы. Отрегулируйте давление в подающем коллекторе топливного насоса с помощью клапана регулирования давления в возвратном трубопроводе жидкого топлива так, чтобы жидкое топливо циркулировало в системе с нормальной производительностью циркуляционного насоса жидкого топлива
  • Тяжелое жидкое топливо должно быть достаточно нагрето, чтобы гарантировать, что его вязкость перед входом в топливные насосы высокого давления находится в указанных пределах
  • Определите расход смазочного масла в цилиндре.Оптимальный расход смазочного масла для цилиндров определяется длительным опытом обслуживания

  • Насосы охлаждающей пресной воды должны работать в обычном режиме, т. Е. Фактический напор соответствует расчетному значению. Если разница давлений между входом и выходом превышает желаемое значение, следует считать капремонт насоса
  • Вентиляционные отверстия в самых верхних точках отсеков охлаждающей воды должны быть закрыты
  • Проверьте уровень во всех резервуарах для воды и масла, а также во всех дренажных резервуарах трубопроводов утечки.Изучите любые аномальные изменения
  • Следите за состоянием охлаждающей пресной воды. Проверить на загрязнение масла
  • Проверьте смотровое стекло дренажного коллектора ресивера наддувочного воздуха, чтобы увидеть, не стекает ли вода, и если да, то сколько.
  • Проверьте испытательные краны продувочного пространства, чтобы увидеть, не вытекает ли жидкость вместе с наддувочным воздухом
  • Проверьте падение давления на масляных фильтрах. При необходимости очистите их
  • По возможности следует проверять температуру ходовой части, прислушиваясь и наблюдая за картером снаружи, а также отслеживая показания детектора масляного тумана.Подшипники, которые были отремонтированы или заменены, требуют особого внимания в течение некоторого времени после ввода в нормальную эксплуатацию
  • Прислушиваясь к шуму двигателя, можно обнаружить неровности
  • Мощность, развиваемая цилиндрами, должна регулярно проверяться и корректироваться через систему управления для сохранения баланса мощности цилиндров
  • Центрифугируйте смазочное масло. Пробы смазочного масла следует брать через частые промежутки времени и отправлять на берег для анализа
  • Убедитесь, что выпускные клапаны вращаются и работают плавно.В противном случае клапан, который не вращается нормально, необходимо отремонтировать при первой возможности.

Защита после остановки

  • После того, как Мост дал команду «Завершить работу с двигателями», переключите управление двигателем в диспетчерскую
  • .
  • Убедитесь, что вспомогательные вентиляторы автоматически выключаются при завершении работы двигателями (FEW), если они находятся в режиме AUTO, или выключают их вручную

Прочтите по теме: Как справиться с условиями эксплуатации судового двигателя при низкой нагрузке?

  • Закройте пусковой воздушный клапан главного двигателя и выпустите воздух из системы управления.Хорошей практикой является блокировка главного пускового клапана в его нижнем положении с помощью запирающей пластины
  • Закрыть вентиль пусковой системы распределения воздуха
  • Включите поворотный механизм и проверьте контрольную лампу
  • После остановки двигателя подождите не менее 15 минут, прежде чем останавливать насос LO главного двигателя, если необходимо провести работы в картере. Это предотвращает перегрев охлаждаемых поверхностей в камерах сгорания и противодействует образованию нагара в головках поршней
  • Держите двигатель предварительно прогретым до минимальной температуры 50 ° C или в соответствии с требованиями руководства по главному двигателю
  • Если двигатель работал на HFO, не останавливайте циркуляционный и подающий насосы FO.Если двигатель работал на MDO, циркуляционный и подающий насосы FO могут быть остановлены
  • Отключить любое оборудование, которое не требуется во время простоя двигателя

Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются, в статье были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не несут за это никакой ответственности.Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и компании Marine Insight.

Теги: работа ГД Двигатели судовые

.

Отправить ответ

avatar
  Подписаться  
Уведомление о
2019 © Все права защищены.