Схема блок розжига ксенона: СХЕМА БЛОКА РОЗЖИГА КСЕНОНА


0
Categories : Разное

Содержание

СХЕМА БЛОКА РОЗЖИГА КСЕНОНА


   Некоторые автолюбители очень хорошо знакомы с таким блоком. Это система розжига газовых ламп. Высокое напряжение проходя через газ (в данном случае ксенон) заставляет последнему ярко засветится — вспыхнуть. Свет получается ослепительно ярким, поэтому такая система используется в основном для освещения. Несколько лет назад такое освещение стало доступным и для автомобиля, но уже сейчас ксенон запрещен во многих странах. 

   Ксеноновые лампы имеют высокую светоотдачу, такую высокую, что яркость свечения одной ксеноновой лампочки в разы больше, чем яркость свечения схожего по площади участка солнца! Именно по этой причине их использование запретили во многих странах. 

   Статистика показывает, что большинство аварий происходят именно из-за слишком яркой светоотдачи таких фар, на автомагистралях они буквально ослепляют водителей идущих навстречу машин, в результате… Поэтому данная схема блока розжига ксенона приводится только для ознакомительных целей.

   Для работы ксеноновой лампочки нужно высокое напряжение порядка 25-30 кВ. Для получения такого напряжения используется рассматриваемый блок, который еще и называют блоком розжига ксенона. По сути, этот блок из себя представляет высоковольтный преобразователь напряжения. 

   В нем все как обычно — задающая часть на специализированной микросхеме, усиливающие ключи на полевых или биполярных транзисторах (в основном на полевых), выпрямительные диоды, накопительная емкость — конденсатор, искровой промежуток (искровик, разрядник) и высоковольтный трансформатор (катушка). После импульсного трансформатора напряжение выпрямляется и накапливается в конденсаторе. В этой части схемы напряжение не более 500 вольт. Через искровой разрядник вся емкость конденсатора разряжается на первичную обмотку высоковольтного трансформатора. Таким образом на высоковольтной обмотке образуются электрические разряды с напряжением 25.000-30.000 вольт, именно они питают ксеноновые лампы.


Поделитесь полезными схемами



УСТРОЙСТВО ВИП СИГНАЛА

    Схема из себя представляет достаточно мощный двухтактный преобразователь напряжения. Сигнал поступает с пульта управления на маломощный усилитель низкой частоты, который выполнен на микросхеме LM386.


ЗВУКОВОЙ АНАЛИЗАТОР СПЕКТРА

   Схема и видеоролик работы анализатора самодельного спектра звука по частотам, на основе микроконтроллера Atmega8-16PU.


САМОДЕЛЬНЫЙ ПРОСТОЙ ТЕРМОРЕГУЛЯТОР
   Работа устройства. Напряжение на управляющем электроде 1 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается.

Схема модуля управления биксенона – Схема-авто – поделки для авто своими руками

Автор admin На чтение 5 мин. Просмотров 25.8k. Опубликовано

При эксплуатации биксенона, очень проблемным оказался модуль управления биксенноном (коммутатор ближнего-дальнего света фар). Первый модуль я просто заменил, второй удалось отремонтировать. О прошлом ремонте я писал здесь. Проработав еще пол года, эксплуатируемый мною модуль управления биксеноном снова умер, на этот раз совсем. Ближний свет просто отказался переключаться на дальний. При мигании дальним светом, ксенон загорался в положении ближнего. К сожалению плата модуля залита эпоксидной смолой в пластиковый корпус, что делает изделие практически не разборным, а значит и не ремонтопригодным. Было принято решение распилить корпус и отделить смолу от платы модуля управления биксенона монтажным феном. При нагревании смолы, она становится мягкой и ее можно окуратно отрывать кусками от печатной платы. Проделано это было из любопытства, очень хотелось посмотреть, что у него внутри и изучить схему модуля управления биксенона. В результате удалось отчистить плату и перерисовать схему. Ниже я привожу ее. Не удалось определить тип полевого транзистора VT1, являющегося ключом коммутирующим питание на блоки розжигов, т.к маркировка на нем была сошлифована. Но самое обидное, не удалось определить маркировку микросхемы, которую я обозвал в схеме D.X.

———————————————————-

для увеличения нажмите на картинку…

Рис.1.    Принципиальная схема модуля управления (коммутатора) биксенона 

Маркировка с микросхемы также была сошлифована. Известно только что у микросхемы 16 выводов, питание 5 вольт, имеется два входа и два выхода, а так же никакой обвязки. Если включен свет фар (ближний или дальний), на 10 выводе микросхемы присутствует 0, так как он соединен через оптрон на корпус. Второй вход управляется дальним светом. В случае если включается дальний свет, срабатывает оптрон DA3, который замыкает вывод 11 микросхемы D.X на корпус. По фронту и спаду на выводе 11, при условии, что на выводе 10 – 0, на одном из выходов микросхемы
(выводы 14,15) появляется короткий импульс, управляющий транзисторами VT4-VT6, включенными по
мостовой схеме. Эти транзисторы и управляют переключением соленоидов. Вывод 1 микросхемы, подключенный через резистор номиналом 10 кОм к корпусу очень напоминает сигнал сброса у какого-то контроллера.

В моем случае к несчастью неисправной оказалась именно микросхема D.X. В следствии этого есть мыли по

восстановлению модуля управления биксеноном, с использованием печатной платы и заменой на ней микросхемы на микроконтроллер, либо на таймер 556 (два 555 таймера в одном корпусе). Либо же замена модуля на несколько реле с конденсаторами. На данный момент я уже оживил схему с использованием сдвоенного таймера 556, но получилась мощная обвязка, что не совсем нравится.

—————————————————————–

В проводке моего биксенона был установлен 10 контактный блок управления с которым периодически возникали проблемы. Первый блок отказал спустя месяц. Соленоиды зависли в положении дальнего света и не желали переключаться на ближний. Помогла замена блока (переставление его с другой проводки). Во второй раз дефект проявился еще через две недели, при включении дальнего света пропадало напряжение с блоков поджига (БП). В результате чего лампы на дальнем свете просто гасли, хотя соленоиды оставались в положении дальнего света. На этот раз я не выдержал и вскрыл блок управления (ту самую черную коробочку, которая установлена в проводке на десяти контактном разъеме). Вскрытие практически ничего не дало, т.к оказалось что внутри он залит эпоксидной смолой. Начал разбираться с распиновкой блока управления, заодно нарисовал схему проводки моего комплекта биксенона.

 

Рис.2 Блок управления биксенона

А вот распиновка блока управления:

Сигнал

Цвет провода

Примечание

1 питание толстый красный  
2 управление соленойдом тонки черный  
3 управление соленойдом 2 тонких красных  
4,5 масса 2 черных толстых  
6,7 питание блоков поджигов 2 черных  толстых При включении должны замыкаться схемой на массу
8 дальный с фишки разъема h5 синий тонкий  
9 ближний с фишки разъема h5 белый тонкий  
10
копус с фишки разъема h5 коричневый тонкий  

При появлении напряжения на фишке h5 (ближнем или дальнем) которая подключается к стандартной лампе автомобиля блок управления должен замкнуть цепь питания блоков поджигов (6,7 контакты) на массу. На контактах 2,3 которые подключены к соленойдам должен появиться кратковременный импульс полярности соответствующей ближнему или дальнему свету. В моем случае при включении дальнего света ключ в блоке управления не срабатывал и блоки поджига не питались.
Было так же установлено, что когда напряжение на фишке h5 есть и на дальнем и на ближнем свете (режим моргания фарами) соленоид перемещается в положение дальнего света, а блоки поджига продолжают находиться под напряжением. Таким образом удалось обойти данную неисправность установкой маломощного диода (в моем случае это был КД522) между 8 и 9 контактами блока управления. Анод диода на 8, катод на 9 контакты. При включении дальнего света напряжение через диод попадает на вход блока управления соответствующий ближнему свету и оба входа оказываются под напряжением.

Рис.3 Лечение блока установкой диода

Так же в ходе эксплуатации данной проводки был сделан вывод о качестве блока управления биксеноном входящем в ее состав.

Как работает ксенон в 2020 году

Чтобы не возникало проблем после установки ламп, необходимо знать, как работает ксенон в фаре в 2020 году, какое оборудование нужно для установки ксенона и какие лампы лучше выбирать.

Сегодня большинство водителей устанавливают на своих автомобилях ксеноновые лампы. С одной стороны, в этом есть огромное преимущество.

Ксенон – мощный источник света, при установке которого можно спокойно ездить даже в непогоду – туман, дождь или снег.

Световые лучи «прорезают» осадки. С другой стороны, самовольная установка нештатного ксенона – нарушение законодательства РФ.

Это связано с тем, что неправильный ксенон может слепить водителей, которые едут по встречной полосе, что способствует увеличению количества аварий на дорогах.

Принимая решение об установке ксенона, необходимо позаботиться о том, чтобы лампы были высшего качества, а сама установка прошла по всем правилам.

Важная информация

На сегодняшний день ксенон является одной из самых современных, передовых технологий. Ее использование позволяет получить самые высокие показатели по мощности потока света.

В сравнении с галогеном, эффективность ксенона имеет показатели выше в 3-4 раза. Иногда ксенон заменяют светодиодами, однако качество этих ламп сильно «хромает».

Водители могут устанавливать ксенон самостоятельно, только при условии, что они знают, как проверить, работает ли ксенон.

Неправильная установка приведет к тому, что ТС не пройдет технический осмотр и лампы придется снимать.

Что это такое

Вещество, используемое для ксеноновых ламп, по своей природе является инертным газом. Он состоит всего из одного атома и совершенно не имеет запаха и цвета и при правильном применении безопасен для человека.

Фото: вид стеклянной емкости с ксеноном

Основной способ получения газа – добыча из радиоактивных источников. В современной промышленности ксенон получают из воздуха, при использовании азота и кислорода.

За счет нескольких сложных преобразований ксенон не имеет никаких примесей. Под давлением его закачивают сразу в колбу лампы.

Приобретать ксенон следует вместе с блоком розжига, который необходим для того, чтобы привести лампу в действие.

Его разновидности

Существует несколько разновидностей ксеноновых ламп. Перед тем, как осуществлять установку, водитель должен решить, какой тип лампы подойдет для конкретного автомобиля наилучшим образом.

Фото: типы ламп с маркировкой

Наиболее распространенными являются ксеноновые лампы старого образца – Н4. При выборе лампы данного типа следует обратить внимание на некоторые варианты:

Биксеноновая лампа Н4 Подходит для того, чтобы использовать оба режима света – ближний и дальний. Работают за счет движения шторки или механического передвижения колбы с ксеноном
Лампы D2R, D2S Работают с подключением к переходнику. Лампа D2R используется для рефлекторной оптики. D2S лучше подходит для линзованной оптики. Разделение необходимо для тех фар, которые были разработаны специально для использования ксенона
Наиболее предпочтительным является ксенон Н4 D2S Он имеет более высокую цветовую температуру, светит более ярко и имеет насыщенный белый оттенок
Лампы Н4 Могут быть корейского производства. Они имеют готовый цоколь

Получить и ближнее и дальнее освещение можно только при установке биксенона. Использование других вариантов, в том числе обычных ксеноновых ламп дает только дальнее, или иногда только ближнее освещение.

Ксеноновые лампы также отличаются по цветовой температуре. Минимальный показатель – оттенок 4040 Кельвинов.

Фары с данной температурой отличаются насыщенным желтым цветом. На лампах 4300 К желтый цвет уже не выделяется.

Можно установить лампы, которые будут испускать цвет, максимально похожий на солнечный – это лампы 5000 – 5500 Кельвинов. Они являются наиболее щадящими для глаз и легко прорезывают дождь, туман.

Использование ламп, которые имеют определенную цветовую температуру – в пределах 6000 – 7000 Кельвинов, позволяет получить голубоватое свечение.

Чем более повышается температура, тем более синий цвет имеют лампы. Ксенон 8000 К отличается насыщенным синим цветов, а лампы 18 000 К – фиолетовый. Такие лампы чаще всего используются для тюнинга и улучшения внешнего вида автомобиля.

Законодательная база

Нормативно-правовые акты, которые должны учитываться и соблюдаться водителями, устанавливающими ксеноновые фары:

Чтобы не возникало проблем при прохождении технического осмотра, водителю следует заблаговременно получить разрешение и согласовать все планируемые изменения.

Как работают ксеноновые фары

Чтобы узнать, как работает адаптивный ксенон, нужно изучить общую схему устройства:

Фото: схема подключения ксенона

Система достаточно проста, а установка осуществляется поэтапно. Особенностью, которую некоторые водители забывают учесть, является то, что после того, как лампы установлены, их необходимо настроить с помощью специального оборудования.

Рассмотрим плюсы и минусы:

Преимущества ксенона:
  • высокое качество освещения, яркость, высокая интенсивность свечения и охват;
  • ксеноновые лампы работают очень долго. Это обусловлено отсутствием в конструкции основной нити, которая быстро изнашивается;
  • высокие показатели продуктивности работы ксеноновых ламп;
  • небольшое потребление тока
Недостатки:
  • высокая стоимость;
  • сложность установки

Выбор ламп следует осуществлять в соответствие с техническими характеристиками транспортного средства, и в зависимости от того, какой цвет нужен водителю авто – ближний или дальний.

Устройство данной лампы (схема)

Ксеноновая лампа принадлежит к типу газоразрядных. Закачивание газа в колбу для дальнейшего его использования осуществляется под высоким давлением.

Какой предусмотрен штраф за ксеноновые фары в 2020 году смотрите в статье: ксеноновые фары.

Про образец заполнения заявление о выдаче водительского удостоверения, читайте здесь.

Основные особенности устройства ксеноновой лампы:

Основной элемент Стеклянная колба, которая имеет очень прочные, толстые стенки
Колба заполняется ксеноном – инертным газом Следует учесть, что некоторые производители добавляют пары ртути
Внутри лампы Находятся два электрода, расположенные на близком расстоянии друг к другу
С внешней части устройства Электроды соединяются с двумя контактами – плюс и минус
К системе присоединяется блок розжига Без него лампа не будет работать
Последний элемент Связка проводов, которую нужно присоединить к системе питания авто

Система достаточно простая, однак, чтобы правильно ее установить, нужно четко разобраться куда и что подключается.

Процесс, в результате которого обеспечивается работа лампы – это реакция, в ходе которой загорается электрическая дуга.

Контакты, расположенные внутри лампы подсоединяются к блоку розжига, через который подается высокий заряд электричества – 25 000 Вольт.

Когда электричество подано, между контактами образуется электрическая дуга. Расположенная в ксеноне, эта дуга начинает ярко гореть.

Штатный ксенон устанавливают еще при производстве машин – на заводе. Чаще всего производители используют лампы 4300 К.

Принцип в использовании

Внутри колбы с ксеноном устанавливаются специальные отражатели. Они позволяют направить свет в правильную сторону. Однако, лампы с отражателями стоят несколько дороже, чем без них.

Следует учесть, что ксенон разгорается постепенно. Это связано с тем, что необходимо время для зажигания дуги – как правило, от пяти до семи секунд.

Блока розжига

Основные технические характеристики блока розжига для стандартных моделей:

Требуемое напряжение Не менее 8 и не более 16 Вольт
Энергопотребление До 55 Ватт
Сила подачи тока к лампам От трех до шести А

Для того, чтобы лампа работала, необходимо получить напряжение в 25 000 Вольт, которое является достаточно высоким. Образуется оно с помощью блока розжига.

Напряжение столь большой силы образуется лишь на несколько миллисекунд – этого достаточно для того, чтобы зажечь ксеноновую лампу.

Принцип работы блока розжига:

Энергия в 12 Вольт Поступает от общей сети в трансформатор, где происходит реакция, в результате которой ток возрастает. Затем напряжение передается в конденсатор, где оно накапливается до 500 Вольт
Следующий шаг Переход напряжения на катушку с высоким напряжением. За счет действия метода индукции, первичная и вторичная катушки выдают напряжение, выше в десять раз. Оно превышает то напряжение, которое было выработано на конденсаторе
Лампа разжигается
Чтобы поддерживать горение ксенона Вырабатывается напряжение 60 – 80 Вольт. Оно зависит от того, насколько мощная лампа установлена в фары

Конечное напряжение составляет всего от 35 до 55 Ватт и сопоставимо с работой обычной галогеновой лампы.

Автокорректор

Несмотря на то, что многим автолюбителям проще воспользоваться ручным корректором, он существенно уступает в работе автоматическому. Второй тип корректора обеспечивает наилучшие характеристики.

Ввиду того, что ксеноновые фары дают свет очень высокой интенсивности, применение автокорректора является обязательным условием.

С помощью данного оборудования обеспечивается поддержание светового луча в соответствие с тем, какие условия движения использует водитель:

  1. Поворот.
  2. Разгон.
  3. Торможение.

При этом обеспечивается нагрузка на одном уровне.

Автокорректор состоит из следующих деталей:

  • датчики просвета дороги – 2-3 датчика;
  • механизмы для поворота ламп;
  • блок управления.

Правильная работа датчиков обеспечивается за счет использования эффекта Холла, который заключается в том, что проводник, по которому проходит ток, вводится в магнитное поле. При этом возникает разность потенциалов.

Видео: как работает лампа

Срок его службы

Среди всех ламп, которые используются для автомобильных фар, ксеноновая является наиболее долговечной. В среднем, она может проработать до 200 000 часов, что равняется примерно пяти годам.

Такие сроки могут быть соблюдены при условии, что фары используются не более трех часов в день. По истечении срока действия, лампа сгорает не сразу – меняется свет.

Чтобы восстановить начальные характеристики и повысить яркость освещения, лампу необходимо заменить.

В чем может быть причина, если моргает одна лампа

Если недавно установленная лампа часто моргает, причина чаще всего, кроется в низком качестве блока розжига. Данная ситуация встречается особенно часто при установке китайских блоков.

Решить проблему можно, только заменив блоки. Не рекомендуется приобретать оборудование китайского производства. Дрожание цвета происходит за счет колебания напряжения.

Приобретать лампы можно у китайских производителей, но блоки розжига следует брать корейские – они более надежные и доступны по цене.

Устанавливая ксенон в фары автомобиля, водитель должен позаботиться о том, чтобы не нарушать закон и впоследствии пройти проверку на пункте СТО.

Лучший вариант – уведомление о проведении работ по смене фар, и выполнение замены в автосервисе, где будет выполнена правильная настройка фар.

Внимание!

  • В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
  • Все случаи очень индивидуальны и зависят от множества факторов. Базовая информация не гарантирует решение именно Ваших проблем.

Поэтому для вас круглосуточно работают БЕСПЛАТНЫЕ эксперты-консультанты!

  1. Задайте вопрос через форму (внизу), либо через онлайн-чат
  2. Позвоните на горячую линию:

ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.

Принцип работы ксенона в 2020 году

Всё больше автолюбителей выбирают для своего транспортного средства ксеноновое освещение. Ксенон устанавливается не только на дорогих автомобилях, но и на бюджетном транспорте.

Это обусловлено отличными показателями эффективности и работоспособности ксенонового освещения.

Что это такое

Ксеноновая лампа считается газоразрядной и представляет собой колбу, наполненную различными инертными газами, один из которых носит название ксенон. Отсюда название лампы.

Такая лампочка не имеет спирали накаливания, она заменена двумя электродами, которые при подаче электроэнергии создают электрическую дугу. Эта дуга и создаёт освещение, выдаваемое лампочкой.

Сама ксеноновая лампа имеет форму эллипса. Кроме инертных газов в колбе присутствуют соли металлов.

Смесь из газа и металла находится под давлением, которое вкупе с подаваемым током создаёт освещение более мощное и хороший поток света, чем, допустим, это делают галогенные лампы.

Основное достоинство газоразрядной лампочки следующие:

  • её мощность, по сравнению с другими элементами освещения. Например, мощность ксеноновой лампы в три раза превышает идентичный показатель галогенной лампочки. В связи с этим, ксеноновое освещение позволяет водителю определить имеющееся препятствие довольно раньше и своевременно предотвратить возможное дорожно-транспортное происшествие;
  • цвет ксенона максимально приближен к дневному свету, поэтому исключена переутомляемость зрения даже при езде в тёмное время суток в течение нескольких часов;
  • экономичное потреблении электроэнергии. По сравнению с галогеном, ксенон потребляет в два раза меньше энергии. При этом производится довольно минимальное нагревание оптики, что продлевает её срок эксплуатации.

Кроме достоинств, как и любое освещение, ксенон имеет свои недостатки:
Самым основным минусом считается повышение опасности ослепления водителей встречных автомобилей.

Сопутствовать этому может нелегальная и неправильная установка ксенона и отсутствие регулировки.

Получается, если все сделать правильно, легально, установить необходимую оптику, то проблем с освещением и неудобством других участников движения можно избежать.

Для примера можно взять водителя загруженного транспортного средства, который передвигается по неровному участку дороги.

При наезде на очередную кочку производится направление светового потока кверху, что приводит не к освещению дороги, а к ослеплению водителей встречки.

Здесь поможет корректор световых лучей, без которого использование ксенона запрещено.

Как используется в фарах автомобиля

Для ксенона используются специальные фары, рефлекторы и линзы, чтобы мощное освещение распределялось правильно и не слепило встречные автомобили.

Кроме того, оптика ксенонового освещения, которая была установлена на автомобиль заводом — производителем оснащена омывателем фар и корректором угла. Это также снижает дискомфорт для иных участников дорожного движения.

Динамический корректор считается наиболее дорогой деталью оптики, но без него при использовании ксенона не обойтись. Омыватель нужен для исключения рассеивания освещения или отдельных потоков света через грязное стекло.

При установке ксенона на автомобили бывшие в эксплуатации, его регулируют посредством стационарного регулятора фар.

Так как в лампочке отсутствуют нити накаливания, на начальном этапе разработки оптики и ксенона поднимался вопрос об одновременном использовании лампы для ближнего и дальнего освещения.

Изначально ксенон можно было устанавливать при наличии в автомобиле четырёх рефлекторов. На сегодняшний момент эта проблема решена производством различных конструкций биксенона.

Стоит понимать, что биксенон будет немного дороже, чем простой ксенон:

  1. Первый вид биксенона представляет собой совмещение двух колб в один цоколь.
  2. Второй имеет специальную шторку, которая частично закрывает рефлектор.
  3. В третьем используется привод, который передвигает лампочку по горизонтали, обеспечивая дальний свет или ближний свет .

Устройство и принцип работы ксенона

Если говорить про штатные лампы, то они имеют конструкцию трубки, которая хорошо запаяна и состоит из прочнейшего стекла или же кварца с отличными показателями надёжности.

Эта трубка содержит смесь инертных газов, которые находятся под давлением. Большую часть из этих газов составляет газ ксенон.

Стеклянная или кварцевая колба имеет внутри себя два электрода, которые обеспечивают прохождение электрического тока, посредством чего образуется соответствующая дуга. Она как раз и служит розжигом имеющегося внутри колбы газа.

Для активации газа нужна энергия, которая преобразуется в высоковольтные импульсы.

Импульс создаётся за счёт специального оборудования, устанавливаемого вкупе с лампочками — блок розжига. Этот аппарат выполняет функции трансформатора.

Корпус лампочки (трубка) может иметь разную форму, в которую впаяли электроды.

Электроды расположены друг напротив друга, по обеим сторонам колбы. Между двумя электродами образуется электрическая дуга, посредством подачи тока, имеющего разряд в пределах 23- 30 тысяч вольт.

Помимо этих двух электродов, образующих дугу, колба имеет ещё один электрод. Он представляет собой металлическую дорожку, проходящую по вертикали вдоль трубки. Он нужен для того, чтобы произошёл процесс ионизации инертных газов и был запущен разряд.

Принцип работы ксеноновой лампы можно разделить на несколько этапов:

  • на первом этапе производится подача тока, а точнее, импульса мощностью 23-30 тысяч вольт. Этот импульс поступает в лампочку и образуется посредством блока розжига;
  • второй этап включает в себя активизацию электрической дуги;
  • третий этап заключается в ионизации газа и пропуска тока, имеющего большое напряжение, посредством чего создаётся вспышка, имеющая белый оттенок. Без этого процесса не произойдёт сокращение сопротивления газов, находящихся внутри стеклянной трубки;

    Процесс ионизации считается запущенным после получения высоковольтного импульса, который создаёт блок. Вследствие этого происходит активизация электродов и выпуск ионов.

  • четвёртый этап обусловлен прохождением тока по газу, который содержится в лампочке и возбуждением атомов ксенона;
  • на пятом этапе происходит процесс принуждения прохождения электронов на орбиту, имеющую более высокие характеристики энергии. Провокация этого действия происходит со стороны активизированных атомов ксенона;
  • шестой и заключительный этап подразумевает возвращение электронов к первоначальной орбите, образуя при этом энергию. Это процесс провоцирует обеспечение выдачи насыщенного и непрерывного освещения;

Яркость освещения обусловлена высоким давлением инертных газов, находящихся в трубке лампочки. В зависимости от того, каких размеров колба лампы, таким и будет степень давления.

Схема

Схема работы следующая:

  1. В самом начале работает блок розжига, который активизирует всю работу ксенонового оборудования.
  2. Старт работы освещения состоит в преобразовании блоком напряжения из 12 в 25 тысяч вольт. Этого достаточно для моментального образования электрической дуги, которая произведёт розжиг ксенона, находящегося в колбе.
  3. Активизация лампы происходит за считаные секунды, причём стремительно достигается и максимальная отметка яркости.
  4. Для того чтобы не произошло потухание лампы при прекращении подачи тока, блок обеспечивает производство тока, который должен поддерживать стабильную и беспрерывную работу ксеноновой лампочки.

Как работает блок розжига

Блок розжига должен обладать высококачественными и надёжными характеристиками. Ведь от него зависит обеспечение и контроль работы всего ксенонового оборудования, установленного в транспортном средстве.

При произошедшем скачке напряжения, коротком замыкании, обрывании проводов и других ситуаций, связанных с напряжением, происходит прекращение подачи тока в лампочку и отключение всей системы ксенонового освещения.

Даже если неправильно установить ксенон (переполюсовка), блок розжига не сможет начать свою работу. Получается, что блок выполняет функции не только розжига лампочки, но и безопасности при использовании ксеноновой системы.

Для того чтобы выбрать блок розжига, стоит обратить внимание на его размер. Они бывают стандартными и компактными.

От размера будут зависеть некоторые характеристики, в том числе и конструктивная особенность транспортного средства, в которое подразумевается установка ксенона.

Блок розжига производит непосредственный розжиг лампы, поддержание освещения (тлеющий разряд), контроль и безопасность ксеноновой системы.

Каждый блок розжига имеет свою рабочую схему, в зависимости от производителя, который предусматривает свой метод по разработке таких аппаратов. Процесс работы блока определён начальной схемой, предоставленной производителем.

Если говорить про классическую схему блока розжига, то в этом случае задействован разрядник. Подача напряжения происходит с низковольтной на высоковольтную часть.

После первоначальной подачи напряжения производится систематический сбор напряжения. Накопление подразделяется на циклы, в промежутках которых происходит возникновение напряжения, используемого для пробивания разрядника.

В зависимости от модели блока розжига, задействовано определённое количество таких циклов.

При наступлении разряжения, происходит перенаправление в лампочку. Это действие и вызывает свечение ксенона.

Какие могут возникнуть неисправности

Неисправности ксенона зачастую связаны с проблемами работы блока розжига. Нарушение освещения довольно зачастую нервирует водителей, производящих эксплуатацию транспортного средства в темное время суток и плохую погоду.

Причём проблема может состоять не только из нарушения яркости и оттенков цвета, но и в полной потере освещения.

Ксеноновое оборудование может выйти из строя:

  • при нарушении герметичности. При попадании влаги в блок розжига, он может прийти в негодность. Это касается не только воды, но и попадания грязи и пыли. Определение негерметичности происходит посредством разбора блока розжига, но при этом существует вероятность, что придётся покупать новый прибор взамен испорченному;

    Только тщательный осмотр сможет определить причину поломки. При нарушении герметичности обычно наблюдается мигание фары, полное отсутствие освещения или создание неравномерного свечения.

  • при следах ржавчины и коррозии. При повреждении ржавчиной спаек, наблюдается их отхождение с положенных мест. А также допускается выпадение припаянных деталей. Причиной возникновения ржавчины и коррозии является попадание влаги или некачественный блок розжига;
  • при повреждении деталей микросхемы (транзистор, обмотка трансформатора, умножитель).

Для того чтобы понять, какая деталь в микросхеме пришла в негодность, следует отделить микросхему от корпуса блока розжига. Это можно сделать и самостоятельно, не прибегая к услугам специалиста.

Главным помощником в этом деле будет осциллограф, который определит поломку без труда.

В случае когда пришёл в негодность контролёр, починка блока практически невозможна. В других случаях есть возможность отремонтировать аппарат и привести его в рабочее состояние.

Срок службы лампы

Период работы ксеноновой лампы считается наиболее большим, в отличие от других средств освещения. Если сравнивать ксенон с галогеном, то срок службы будет в три — пять раз больше.

Долговечность ксеноновых лампочек обусловлена тем, что они не имеют спирали, которая может прийти в негодность при вибрации на дорогах.

Срок службы ксенона составляет в среднем 3 тысячи часов. Получается, что при использовании автомобиля по 2 часа ежедневно, ксеноновая лампочка прослужит около четырёх лет.

Это — основные принципы работы ксеноновых лампочек.

Видео: Как работает КСЕНОН (его лампа) Также разберем работу блока розжига. Просто о сложном

Внимание!

  • В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
  • Все случаи очень индивидуальны и зависят от множества факторов. Базовая информация не гарантирует решение именно Ваших проблем.

Поэтому для вас круглосуточно работают БЕСПЛАТНЫЕ эксперты-консультанты!

  1. Задайте вопрос через форму (внизу), либо через онлайн-чат
  2. Позвоните на горячую линию:

ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.

Преобразователь напряжения с 12 на 220 вольт из блока розжига ксенона.

Хочу вам рассказать, как можно просто сделать из ксенонового блока розжига преобразователь напряжения с 12 на 220 вольт. При этом не надо обладать большими навыками и знаниями, то есть данную поделку может сделать практически любой человек.

Сейчас наступает такое время, когда вместо ксеноновых ламп начинают ставить светодиодные лампы, а ксенон становится ненужный, вот в этой статье мы найдем ему применению.

Итак, от ксенонового оборудования нам потребуется один лишь блок без высоковольтного трансформатора, вот которые на фото ниже: Ксеноновые блоки есть разные, с внешним высоковольтным трансформатором (фотки выше) и встроенным высоковольтным трансформатором, типа вот этого.Нам подойдёт лишь тот блок, который имеет отдельный, внешний, высоковольтный трансформатор, вот его то мы берём и отрезаем, и у нас остаётся лишь один чистый блок.

Далее, на место, где у нас стоял высоковольтный трансформатор вместо него прикручиваем к проводам обыкновенную розетку (полярность не имеет значения), в которую будем включать потребители, такие например, как лампочки, как простые так и энергосберегающие,  различные импульсные блоки питания, например ноутбук, зарядные устройства импульсные ну и так далее…

Подключать нельзя: электродвигатели, трансформаторные блоки питания или устройства с сетевым трансформатором.

Затем берём другой провод, который выходит из блока питания ксенона (это низковольтовый вход) и тоже обрезаем его, а на его место прикручиваем провода, которые будем подсоединять к 12 вольтам, то есть к аккумулятору.

Здесь полярность имеет значение, красный провод плюс, чёрный минус. На концы этих проводов я припаял крокодилы, чтобы было удобней подсоединять к АКБ.

Обычные блоки розжига в основном 35 ваттные

На выходе нашего переделанного, подключенного к АКБ блока мы имеем около 230 вольт, но напряжение высокочастотное, то есть замерить простым мультиметром его не получиться.

В итоге у нас получается компактный преобразователь с 12 на 220, который всегда может пригодиться, тем более что сделан из ненужного уже ксенона.

Вот и тест, лампочка в 60 ватт светит прекрасно.А вот подсоединено одновременно ночник с энергосберегающей лампой и зарядка с телефоном. Всё прекрасно работает.

Творческих вам успехов…

 

неисправность блока розжига лампы (фото, видео)

Ксеноновые лампы вывели автомобильный свет на совершенно иной уровень. Каждый автолюбитель, испробовавший нововведения, может легко отметить положительные моменты их применения. К сожалению, поломки происходят с разными деталями новых систем освещения. Отнестись к каждой из них стоит внимательно, ведь стандартные методы решения могут не дать нужного результата.

Рассмотрим одну из сложных поломок, которая может потребовать существенных материальных затрат. Ее название – выход из строя блока розжига ксеноновой лампы.

Что такое блок розжига ксенона?

Блок розжига ксеноновой лампы – сложная электронная схема, способная привести в действие лампу через вспышку мощного импульса. Блок представлен в виде металлической прямоугольной коробочки, которая закреплена под фарой автомобиля.

Интересно!

На блоке указана информация о производителе и основные характеристики продукта. Кроме этого, есть специальное гнездо для подключения фары и датчика. Разъем защищен герметичной резинкой.

Где располагается блок розжига?

Блок укреплен в нижней части фары. Самостоятельно добраться до него просто открыв капот не получится. Лучше всего, доставать фару и отсоединять датчики с проводами. Для этого потребуется снять передний бампер. Провести операцию можно самостоятельно или воспользовавшись услугами автоэлектрика.

Также читайте: Ауди Q7 2019 года – новая модель – когда выйдет в России

Как определить, что блок розжига ксенона вышел из строя?

В автомобиле, оснащенном функционирующими датчиками, бортовой компьютер сообщит об ошибке. «Проверьте лампу ближнего света», «Отсутствие ближнего света» и прочее. Конечно, сразу искать проблему в блоке – ошибка. Возможно, дело в самой лампе. Для этого, ее нужно достать и вначале проверить визуально.

Совет!

Если есть повреждения, то менять нужно именно ее. Также не будет лишним переставить лампочку из работающей фары. Если отклика не последует и свет не загорится, то проблема действительно в блоке розжига.

В некоторых марках, отключение предохранителей может привести к параличу конкретных систем организма. Решит проблему в таком случае обычная замена.

Также читайте: Какие изменения в ПДД с 1 января 2019 вступили в силу

Причины выхода из строя блока розжига

Практика показывает, что ключевыми причинами поломки являются:

  1. Попадание в середину блока влаги.
  2. Неисправности проводки, вызвавшие замыкание.
  3. Отсутствие контакта в соединении.

Причина №1: вода

Любое запотевание фары – это тревожный сигнал для владельца авто. Разгерметизация позволяет воде заполнять саму нишу фары, что приводит к попаданию влаги в блок. Страдает само соединение. До определенного момента схемы держат нагрузку, но со временем, сильное напряжение и контакт с водой, приводят к поломке.

Совет!

При такой поломке только замена блока не поможет. Лучше всего просушить фару и герметизировать ее. Произвести такой процесс могут специалисты. Если фара имеет существенные нарушения целостности, то придется производить ее полную замену.

Возможно, что блок лишь частично вышел из строя вследствие окисления контактов. Просушив блок и продув внутренность можно его проверить установить еще раз.

Причина №2: неисправности проводки

Изъяны проводки может диагностировать исключительно профессионал. Самостоятельные попытки залезть в систему высокого напряжения могут трагически обернуться для жизни и здоровья. Если проблема действительно в проводах электрического обеспечения, то скорее всего, их лучше заменить.

На заметку!

Если произошло замыкание устройства, то обратить внимание нужно на предохранители. Возможно, замена нужного элемента вернет устройство фары к работе.

Причина №3: отсутствие контакта

Автоэлектрик, в первую очередь, обязательно проверит все подходы к фаре. Иногда случается, что банальное окисление контактов или их отсоединение приводит к отключению света фары.

Важно!

Если проблема действительно в окислении, то блок был подвержен воздействию влаги. Значит, необходимо проверить места, где в основное пространство может попадать вода. Проблема разгерметизации фары описана выше. Возможно, необходимо проверить резинку крышки капота.

Ремонт блока розжига

Блок розжига – сложная схема, в которой связаны сотни деталей. Если вы специалист в данной сфере, то провести ремонт можно самостоятельно. Для этого вскрываем металлическую коробку, прочищаем детали, находит поврежденные места и производим их очищение, замену.

Также читайте: Тойота Рав 4 2019 года – когда выйдет в России

Большая часть экспертов склонна полагать, что ремонт сгоревшего блока – это временное мероприятие. Статистика показывает, что такая вещь прослужит совсем недолго, а иногда приводит и к более серьезным последствиям.

Интересно!

Лучшее решение – замена блока. Можно подобрать оригинальную или универсальную деталь. Практика показывает, что оригинальные детали выполнены из более качественного материала и прослужат дольше.

Найти и заказать блок всегда можно через официальный сервис или интернет.

Системы зажигания турбинных двигателей

Так как системы зажигания турбинных двигателей работают в основном в течение короткого периода во время цикла запуска двигателя, они, как правило, более безотказны, чем типичная система зажигания поршневого двигателя. Системе зажигания газотурбинного двигателя не требуется синхронизировать время срабатывания искры в точной точке рабочего цикла. Он используется для воспламенения топлива в камере сгорания, а затем отключается. Другие режимы работы системы зажигания турбины, такие как непрерывное зажигание, которое используется при более низком уровне напряжения и энергии, используются для определенных условий полета.

Непрерывное зажигание используется в случае возгорания двигателя. Это зажигание может повторно зажечь топливо и не дать двигателю остановиться. Примерами критических режимов полета, в которых используется непрерывное зажигание, являются взлет, посадка, а также некоторые нештатные и аварийные ситуации.

Большинство газотурбинных двигателей оснащены высокоэнергетической системой зажигания конденсаторного типа и охлаждаются воздухом с помощью вентилятора. Воздух от вентилятора направляется к корпусу возбудителя, а затем обтекает провод воспламенителя и окружает воспламенитель, прежде чем вернуться в область гондолы.Охлаждение важно, когда непрерывное зажигание используется в течение некоторого длительного периода времени. Газотурбинные двигатели могут быть оборудованы системой зажигания электронного типа, которая является разновидностью более простой системы емкостного типа.

Типичный газотурбинный двигатель оборудован системой зажигания конденсаторного типа или конденсаторного разряда, состоящей из двух идентичных независимых блоков зажигания, работающих от общего низковольтного (постоянного) источника электроэнергии: аккумуляторной батареи самолета, 115 переменного тока или постоянного магнитный генератор.Генератор вращается непосредственно двигателем через дополнительную коробку передач и вырабатывает мощность каждый раз, когда двигатель вращается. Топливо в газотурбинных двигателях может легко воспламениться в идеальных атмосферных условиях, но, поскольку они часто работают при низких температурах на больших высотах, крайне важно, чтобы система была способна подавать искру высокой тепловой интенсивности. Таким образом, высокое напряжение подается на дугу через широкий искровой промежуток запального устройства, обеспечивая высокую степень надежности системы зажигания в самых разных условиях высоты, атмосферного давления, температуры, испарения топлива и входного напряжения.

Типичная система зажигания включает два блока возбудителя, два трансформатора, два промежуточных провода зажигания и два провода высокого напряжения. Таким образом, в качестве фактора безопасности система зажигания фактически представляет собой двойную систему, предназначенную для зажигания двух свечей зажигания. [Рисунок 4-65] Рисунок 4-65. Компоненты системы зажигания турбины.

На рис. 4-66 представлена ​​функциональная принципиальная схема типичной системы зажигания конденсаторной турбины старого образца. Входное напряжение 24 В постоянного тока подается на входную розетку блока возбуждения.Прежде чем электрическая энергия достигнет блока возбудителя, она проходит через фильтр, который предотвращает попадание шумового напряжения в электрическую систему самолета. Низковольтная входная мощность управляется двигателем постоянного тока, который приводит в действие один многолепестковый кулачок и один однополюсный кулачок. В то же время входная мощность подается на набор точек прерывания, которые приводятся в действие многолепестковым кулачком.

Рисунок 4-66. Схема системы зажигания конденсаторного типа. [Щелкните изображение, чтобы увеличить] Из точек прерывателя быстро прерываемый ток подается на автотрансформатор.Когда выключатель замыкается, ток через первичную обмотку трансформатора создает магнитное поле. Когда выключатель размыкается, ток прекращается, а исчезновение поля вызывает напряжение во вторичной обмотке трансформатора. Это напряжение заставляет импульс тока течь в накопительный конденсатор через выпрямитель, что ограничивает поток в одном направлении. При повторяющихся импульсах накопительный конденсатор принимает заряд до максимум примерно 4 джоулей.(Примечание: 1 джоуль в секунду равен 1 ватту.) Накопительный конденсатор подключается к искровому воспламенителю через пусковой трансформатор и контактор, нормально разомкнутый.

Когда заряд на конденсаторе накапливается, контактор замыкается за счет механического воздействия одноступенчатого кулачка. Часть заряда проходит через первичную обмотку пускового трансформатора и подключенный к нему конденсатор. Этот ток индуцирует высокое напряжение во вторичной обмотке, которое ионизирует промежуток в искровом воспламенителе.

Когда искровой воспламенитель становится проводящим, накопительный конденсатор разряжает остаток своей накопленной энергии вместе с зарядом конденсатора последовательно с первичной обмоткой пускового трансформатора. Скорость искры в искровом воспламенителе изменяется пропорционально напряжению источника постоянного тока, которое влияет на частоту вращения двигателя. Однако, поскольку оба кулачка соединены с одним и тем же валом, накопительный конденсатор всегда накапливает запас энергии от одного и того же количества импульсов перед разрядом.Использование высокочастотного пускового трансформатора с вторичной обмоткой с низким сопротивлением сокращает время разряда до минимума. Эта концентрация максимальной энергии за минимальное время обеспечивает оптимальную искру для воспламенения, способную удалять отложения углерода и испарять шарики топлива.

Все высокое напряжение в цепях запуска полностью изолировано от первичных цепей. Возбудитель полностью герметичен, что защищает все компоненты от неблагоприятных условий эксплуатации, исключает возможность перекрытия на высоте из-за изменения давления.Это также обеспечивает защиту от утечки высокочастотного напряжения, мешающего радиоприему самолета.

Блок конденсаторного разрядного возбудителя

Эта система емкостного типа обеспечивает зажигание газотурбинных двигателей. Как и другие системы зажигания турбины, требуется только для запуска двигателя; после начала горения пламя остается непрерывным. [Рисунок 4-67] Рисунок 4-67. Возбудитель с воздушным охлаждением вентиляторный. [Щелкните изображение, чтобы увеличить] Энергия хранится в конденсаторах.Каждая разрядная цепь включает два накопительных конденсатора; оба расположены в блоке возбудителя. Напряжение на этих конденсаторах повышается трансформаторными блоками. В момент зажигания свечи зажигания сопротивление зазора снижается в достаточной степени, чтобы позволить большему конденсатору разрядиться через зазор. Разряд второго конденсатора происходит при низком напряжении, но очень высокой энергии. В результате образуется искра большой интенсивности, способная не только воспламенить аномальные топливные смеси, но и сжечь любые посторонние отложения на электродах свечи.

Возбудитель представляет собой сдвоенный блок, который производит искры на каждой из двух свечей воспламенителя. До запуска двигателя образуется непрерывная серия искр. Затем питание отключается, и свечи не загораются, пока двигатель работает, кроме как при постоянном зажигании для определенных условий полета. Вот почему возбудители имеют воздушное охлаждение для предотвращения перегрева при длительном использовании непрерывного зажигания.

Свечи зажигания

Свеча зажигания системы зажигания газотурбинного двигателя значительно отличается от свечи зажигания системы зажигания поршневого двигателя.[Рисунок 4-68] Его электрод должен выдерживать ток гораздо большей энергии, чем электрод обычной свечи зажигания. Этот ток высокой энергии может быстро вызвать эрозию электрода, но короткие периоды работы сводят к минимуму этот аспект технического обслуживания воспламенителя. Зазор между электродами типичной свечи зажигания спроектирован намного больше, чем у свечи зажигания, поскольку рабочее давление намного ниже, и искра может образовывать дугу легче, чем в свече зажигания. Наконец, загрязнение электродов, обычное для свечей зажигания, сводится к минимуму за счет тепла искры высокой интенсивности.

Рисунок 4-68. Свечи зажигания.

На рис. 4-69 в разрезе показана типичная свеча воспламенителя с кольцевым зазором, которую иногда называют воспламенителем с большим вылетом, потому что она слегка выступает во гильзу камеры сгорания для создания более эффективной искры.

Рисунок 4-69. Типовая свеча воспламенителя с кольцевым зазором.

Другой тип свечи зажигания, свеча с ограниченным зазором, используется в некоторых типах газотурбинных двигателей. [Рисунок 4-70] Он работает при гораздо более низкой температуре, поскольку не выступает во гильзу камеры сгорания.Это возможно, потому что искра остается не вблизи свечи, а дуги за лицевую поверхность гильзы камеры сгорания.

Рисунок 4-70. Свеча запальника с ограниченным зазором.

Бортовой механик рекомендует

Sinolyn Блок блока ксенонового зажигания 12V 35W Балластный реактор переменного тока для HID ксеноновых ламп Лампочки H7 h2 h21 9005 9006 Принадлежности DIY | балластная печатная плата | Балласт для определения УФ-лампы

Sinolyn ксеноновый блок зажигания 12 В 35 Вт балластный реактор переменного тока для ксеноновых ламп HID H7 h2 h21 9005 9006 Аксессуары DIY

Особенности:

  • 100% настоящий тонкий балласт переменного тока 9-16 В 35 Вт, не дешевый балласт постоянного тока

  • Пройдите сертификацию качества CE и E13

  • Интеллектуальная защита от сбоя питания, подключения и короткого замыкания

  • Пусковое напряжение 23кВ, 3.2А-5А пуск, рабочее входное напряжение 9-16В, рабочий вход 3,2А-5А

  • Срок службы: более 3500 часов

  • Световой поток: 3200 лм, в 3 раза ярче, чем галогенное освещение, низкое энергопотребление всего 35 Вт, высокая световая отдача

  • Виброустойчивость

  • Поставляется с крепежными болтами и кронштейном

Внимание: это стандартные балласты переменного тока, они не подходят для автомобилей с системой CANbus.

Если в вашем автомобиле есть система canbus, пожалуйста, проверьте мою следующую ссылку для балласта canbus, который может избежать ошибки приборной панели, спасибо!

https://www.aliexpress.com/store/product/Sinolyn-New-9-16V-AC-35W-Premium-Canbus-Error-Free-Digital-Slim-Ballast-Replacement-Reactor-Block/1045972_32799711760.html? spm = 2114.12010612.8148356.7.7ee66f0cPvq7js

В коплект входит:

1 шт. Или пара балластов переменного тока (база на ваш выбор)

Монтажный кронштейн


Часть 1 — Тестирование силового транзистора, катушки зажигания и датчика кривошипа

Это руководство поможет вам проверить и устранить неисправности катушки зажигания, силового транзистора (модуля управления зажиганием) и датчика положения коленчатого вала на модели 1990–1994 гг. 3.0L V6 Mitsubishi Montero, Mighty Max и Dodge Ram 50. Для любого из этих тестов не требуется диагностический прибор.

Вне зависимости от того, есть ли в вашем автомобиле искра / отсутствие запуска или пропуски зажигания, вы сможете определить причину проблемы в катушке зажигания, силовом транзисторе, датчике положения коленчатого вала (расположенном внутри распределителя) или проводах свечи зажигания. или крышка распределителя.

Чтобы убедиться, что это руководство по тестированию применимо к вашему конкретному автомобилю Mitsubishi или Dodge, пожалуйста, взгляните на таблицу приложений внизу этой страницы (мобильное устройство) или в левом столбце этой страницы (ПК).

Вы можете найти это руководство на испанском языке здесь: Cómo Probar El Sistema De Encendido (1990–1994 годы, 3,0 л V6 Mitsubishi Montero) (по адресу: autotecnico-online.com ).

Основные принципы работы системы зажигания

Вот небольшая рабочая теория о том, как система зажигания на вашем Mitsubishi 3.0L V6 создает искру, необходимую для запуска вашего автомобиля. В двух словах, когда система зажигания работает нормально, и вы поворачиваете ключ, чтобы провернуть и запустить двигатель:

  1. Вал распределителя начинает вращаться, в результате чего датчик положения коленчатого вала начинает генерировать сигнал положения коленчатого вала и распределительного вала, который отправляется непосредственно в компьютер впрыска топлива (также известный как PCM).
  2. С обоими этими сигналами (и другими сигналами от других входных датчиков) PCM начинает активировать силовой транзистор (модуль управления зажиганием) для включения и выключения первичного тока катушки зажигания (12 В).
  3. Это действие «включения / выключения» также известно как сигнал переключения, и, как вы, возможно, уже знаете, этот сигнал активирует катушку зажигания, чтобы начать искрение.
  4. Искра от катушки зажигания подается к центру крышки распределителя по проводу высокого напряжения (провод свечи зажигания).
  5. Ротор распределителя затем получает эту искру, которая затем распределяется по башням крышки распределителя.
  6. Из этих опор крышки распределителя искра, наконец, достигает свечи зажигания через провода свечи зажигания.

Датчик положения коленчатого вала лежит в основе системы зажигания этого типа. Вот несколько полезных фактов о датчике положения коленчатого вала на вашем внедорожнике или пикапе Mitsubishi, которые вам следует знать:

  1. Узел датчика положения коленчатого вала находится в распределителе.
  2. Узел датчика положения коленчатого вала выдает как сигнал положения кулачка, так и сигнал положения коленчатого вала.
  3. Датчик оптического типа.
  4. Оба датчика выдают цифровую прямоугольную волну, если проверять их на осциллографе.
  5. Оба этих сигнала также можно проверить с помощью недорогой светодиодной лампы (это метод, который я буду использовать в этом руководстве).
  6. В случае неисправности ваш внедорожник или пикап Mitsubishi проворачивается, но не заводится.

Прелесть всего этого заключается в том, что эту систему зажигания очень просто проверить, и для этого не нужно дорогое оборудование!

Какие инструменты мне нужны?

Для проверки системы зажигания этого типа не требуются дорогостоящие инструменты. Сказав это, есть несколько очень специфических инструментов, которые я рекомендую использовать для тестов. Итак, вот основной список:

  1. Тестер искры
    1. Не только для искрового тестера.Я настоятельно рекомендую вам купить тестер искры HEI (у вас нет тестера искры HEI? Нужно его купить? Вы можете купить его здесь: OTC 6589 Electronic Ignition Spark Tester).
    2. Не используйте обычную свечу зажигания вместо специального тестера искры.
    3. Не отсоединяйте провод свечи зажигания от свечи зажигания, когда двигатель проворачивается или работает. Это даст ложный результат и / или повредит катушку зажигания.
  2. Светодиодный светильник.
    1. Нажмите здесь, чтобы увидеть, как это выглядит: LED Light Tool
    2. Абэ
  3. Контрольная лампа.
  4. Мультиметр.
    1. Подойдет и дешевый (у вас нет цифрового мультиметра? Нужно его купить? Щелкните здесь, чтобы увидеть мои рекомендации: Покупка цифрового мультиметра для диагностического тестирования автомобилей ).
  5. Руководство по ремонту.
    1. Для любой другой информации, которую эта статья не охватывает.
  6. Помощник.
    1. Чтобы помочь вам запустить двигатель, наблюдая за светодиодной лампой (или контрольной лампой, или мультиметром).

Как упоминалось в начале этой статьи, вам не нужен автомобильный сканер для любого из этих тестов.

Силовой транзистор: описание схем

Силовой транзистор (также известный как модуль управления зажиганием -ICM) имеет три провода, выходящие из разъема. Ниже приведены описания схем, которые я буду использовать в этом руководстве.

  1. Контур 1
    1. Цепь выхода коммутационного сигнала (на катушку зажигания).
  2. Контур 2
    1. Силовая цепь (12 В).
  3. Схема 3
    1. Цепь входного сигнала запуска (этот сигнал поступает от компьютера впрыска топлива).

ВАЖНАЯ ИНФОРМАЦИЯ: Необходимо будет проверить некоторые из этих цепей, пока двигатель запускается. Будьте осторожны, руководствуйтесь здравым смыслом и примите все необходимые меры предосторожности.

Датчик положения коленчатого вала: описание цепей

Датчик положения коленчатого вала представляет собой четырехпроводной датчик, состоящий из двух датчиков в одном узле. Ниже приведены описания схем, которые я буду использовать в этом руководстве.

  1. Контур 1
    1. Цепь заземления.
  2. Контур 2
    1. Силовая цепь (12 В).
  3. Схема 3
    1. Выход сигнала положения коленчатого вала.
  4. Схема 4
    1. Выход сигнала положения распределительного вала.

ВАЖНАЯ ИНФОРМАЦИЯ: Необходимо будет проверить некоторые из этих цепей, пока двигатель запускается. Будьте осторожны, руководствуйтесь здравым смыслом и примите все необходимые меры предосторожности.

Катушка зажигания

: описание схем

У катушки зажигания всего два провода, выходящих из разъема. Один подает на него питание (от 10 до 12 В), а другой подает сигнал переключения.Ниже приведены описания схем, которые я буду использовать в этом руководстве.

  1. Контур 1
    1. Цепь входного сигнала переключения.
  2. Контур 2
    1. Силовая цепь (от 10 до 12 В).

ВАЖНАЯ ИНФОРМАЦИЯ: Необходимо будет проверить некоторые из этих цепей, пока двигатель запускается. Будьте осторожны, руководствуйтесь здравым смыслом и примите все необходимые меры предосторожности.

Замок зажигания — общие признаки отказа зажигания

Выключатель зажигания — общие признаки неисправности выключателя зажигания

Сегодня выключатель зажигания представляет собой сложное устройство, которое приводит в действие многочисленные электрические и электронные системы автомобиля.

Фактически новейшая версия драйвера определяет ключ и позволяет ему активировать стартовую систему.

Одним из основных признаков неисправного ключа зажигания является то, что приборная панель не загорается при повороте ключа.

С другой стороны, это тоже может быть признаком разряженной батареи. Перед любым ремонтом всегда проверяйте и подтверждайте, что аккумулятор полностью заряжен. Выключатель зажигания используется для блокировки рулевого колеса при извлечении ключа. Итак, выключатель зажигания играет важную роль в предотвращении угона вашего автомобиля.

Следовательно, без ключа переключатель не переместится в положение запуска или работы и заблокирует рулевое колесо.

Общий переключатель зажигания имеет четыре положения:

Настройки положения переключателя зажигания Изображение
  • ВЫКЛ — или положение БЛОКИРОВКА — Отключает питание двигателя и электрических аксессуаров
  • ACC — Положение для дополнительного оборудования, обеспечивающее питание только электрических устройств, но не двигателя.
  • RUN — Положение «ВКЛ», при котором подается питание на двигатель и электрические аксессуары.
  • START — Используется только для запуска двигателя.

Многие автомобили, выпущенные за последние 10 лет, имеют кнопку вместо ключа зажигания и выключателя. В этой конструкции брелок посылает в компьютер автомобиля сигнал о том, что заводить двигатель можно. Если все в порядке, компьютер подает сигнал стартеру, чтобы запустить двигатель.

Очень немногие переключатели зажигания внезапно выходят из строя

Большинство переключателей начинают периодически выходить из строя и обычно чувствительны к температуре , и влажности. Если переключатель выходит из строя при большой нагрузке на аксессуары, внутренние контакты могут сильно окислиться. В любом случае, большинство переключателей предупреждают о надвигающемся отказе в различных условиях температуры и нагрузки.

Общие признаки отказа зажигания

Двигатель не запускается

Проблема здесь наверное:

  • Противоугонная неисправность
  • Неисправность в цепи топливного насоса
  • Цепь зажигания
  • Компьютер двигателя

Если мигает индикатор защиты от кражи, компьютер НЕ распознает ключ или брелок и препятствует запуску двигателя.

Индикатор безопасности на панели

Это может быть связано с:

  • Плохой приемник в переключателе, который читает ключ
  • Поврежден смарт-ключ или брелок
  • Неисправность проводки между переключателем и компьютером

Может потребоваться перепрограммирование компьютера, чтобы компьютер правильно распознал смарт-ключ или брелок.

Двигатель умирает после запуска
  • Это один из наиболее частых симптомов неисправного переключателя.Изношенные контакты внутри переключателя могут вызвать кратковременную потерю напряжения в результате нагрева или вибрации. В результате любая потеря мощности из-за переключателя приведет к спотыканию двигателя, пропуску зажигания или прекращению работы двигателя.
Периодическая потеря освещения или аксессуаров
  • Изношенный переключатель может нарушить подачу питания на электронику автомобиля. Это может вызвать такие симптомы, как мигание подсветки приборной панели и аксессуары, которые на мгновение перестают работать.
Стартер не вращается
  • Если повернуть ключ и ничего не произойдет, есть вероятность, что выключатель не замыкает цепь.Это может привести к прекращению подачи питания от аккумулятора на стартер. Вы можете проверить это, посмотрев, работают ли другие аксессуары в автомобиле. Когда ключ находится во включенном положении, посмотрите, работают ли радио или электрические стеклоподъемники.
Проблемы при попытке вынуть ключ
  • Это может быть связано с заеданием замка рулевой колонки. Попробуйте покачивать рулевое колесо взад и вперед, пока не почувствуете, что оно зафиксировалось со щелчком. Теперь вы можете вынуть ключ из переключателя.Если ключ все равно не выходит, проблема может быть в повреждении механизма блокировки колонки. С другой стороны, если переключатель выходит из строя, двигатель может продолжать работать после того, как вы вытащите ключ.

Кто должен заменить выключатель зажигания

Самый простой и безопасный способ заменить выключатель зажигания — это отнести свой автомобиль в ремонтную мастерскую или к продавцу новых автомобилей и попросить их заменить выключатель зажигания.

Знак безопасности на приборной панели

Выключатель зажигания на некоторых автомобилях является частью интегрированной противоугонной системы.Когда вы заменяете выключатель, вам нужно будет перепрограммировать ключ зажигания. Обычно это доступно только через дилерский центр вашего автомобиля. Замена переключателя зажигания обычно включает отключение рулевой колонки, что может привести к непреднамеренному срабатыванию подушки безопасности, если все сделано неправильно.

Заключение

Итак, выключатели зажигания — один из наиболее часто используемых выключателей на автомобиле. Изношенные контакты переключателя, проблемы с температурой или сломанные пружины могут привести к отказу зажигания, не позволяя завести автомобиль.В дороге из-за плохих контактов выключателя зажигания двигатель может заглохнуть во время движения, что может быть опасно.

Поделитесь новостями портала DannysEngine

Блок зажигания (системы TCI и CDI) | Мотоциклетные изделия

  • TCI и CDI
  • Блок зажигания для мотоциклов

Блок зажигания — это компонент, который выполняет последнюю часть процесса зажигания и сжигания топлива, подаваемого в цилиндр (цилиндры) двигателя.

Использование и совместимость

Использование Зажигание двигателя
Совместимые продукты Мотоциклы, малые универсальные двигатели и судовые двигатели

Продукты

Система зажигания с транзисторным управлением (TCI)

Когда транзистор включен, ток проходит через первичную обмотку катушки зажигания (далее катушка) от батареи для хранения энергии. А когда транзистор выключен, ток отключается, вызывая внезапное изменение тока, генерируя высокое напряжение на вторичной стороне катушки и инициируя зажигание.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Встроенный электролитический конденсатор для кикстарта
  • Совместимость со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая бортовым процессором
  • Структура цепи TCI

CDI (воспламенитель разряда конденсатора)

Конденсатор заряжается через прямое соединение с напряжением от ACG или батареи, или напряжение увеличивается для зарядки конденсатора.Заряженная электрическая нагрузка полностью разряжается, создавая высокое напряжение на вторичной стороне катушки, вызывая воспламенение и горение.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Стабильное зажигание возможно до высоких оборотов
  • Встроенный электролитический конденсатор для кикстарта
  • Совместимость со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая бортовым процессором
  • Использование собственных повышающих трансформаторов, диодов и тиристоров для обеспечения высокой надежности по низкой цене
  • Структура схемы CDI

P1355 VOLKSWAGEN Обрыв цепи включения зажигания цилиндра 1 (с видео)

Уровень важности ремонта: 3/3

Ремонт Уровень сложности: 2/3

P1355 VOLKSWAGEN Возможные причины

  • Неисправность катушки зажигания цилиндра 1
  • Жгут проводов катушки зажигания цилиндра 1 обрыв или короткое замыкание
  • Катушка зажигания цилиндра 1 Плохое электрическое соединение в цепи
  • Неисправен модуль управления двигателем (ЕСМ)

Как исправить код P1355 VOLKSWAGEN?

Проверьте «Возможные причины», перечисленные выше.Осмотрите соответствующий жгут проводов и разъемы. Проверьте наличие поврежденных компонентов и поищите сломанные, изогнутые, выдвинутые или корродированные контакты разъема. Что вы знаете об автомобилях?

Пройдите автомобильные тесты AutoCodes.com и получите новые знания по ремонту автомобилей.

Играть сейчас

Технические заметки

2002-2004 Volkswagen Golf, Jetta, New Beetle




Видео, отправленное пользователем

Стоимость диагностики P1355 VOLKSWAGEN код

Режим работы: 1.0

Стоимость диагностики кода P1355 VOLKSWAGEN составляет 1,0 час труда. Стоимость ремонта автомобиля зависит от местоположения, марки и модели вашего автомобиля и даже от типа двигателя. Большинство автомастерских берут от 75 до 150 долларов в час.

Возможные симптомы

  • Горит индикатор двигателя (или предупреждающий световой сигнал о необходимости обслуживания двигателя)

P1355 VOLKSWAGEN Описание

Модуль управления двигателем ( ECM, ) должен определить, происходит ли пропуск зажигания, определить конкретный цилиндр (цилиндры) и серьезность события пропуска зажигания, а также указать, относится ли это к выбросам или повреждению катализатора.Для выполнения этих задач модуль управления контролирует коленчатый вал на предмет потерь при ускорении во время сегментов зажигания каждого цилиндра в зависимости от порядка зажигания.
Расчет пропусков зажигания / шероховатости двигателя выводится из разницы в продолжительности периода (T) отдельных сегментов инкрементной шестерни. Каждый период сегмента состоит из углового диапазона 120 ° угла поворота коленвала, который начинается за 78 ° до верхней мертвой точки (ВМТ).
Если ожидаемая продолжительность периода больше допустимого значения, пропуск зажигания для конкретного цилиндра сохраняется в памяти неисправностей блока ECM .В зависимости от уровня измеренной частоты пропусков зажигания блок управления загорится индикатором «Service Engine Soon», может отключить подачу топлива в конкретный цилиндр и может переключить лямбда-режим в открытый контур. Все пропуски зажигания взвешиваются, чтобы определить, связаны ли пропуски зажигания с выбросами или повреждением катализатора.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.