Система охлаждения машины: Система охлаждения двигателя. Что нужно знать и как проводить профилактику системы


0
Categories : Разное

Содержание

Система охлаждения двигателя. Что нужно знать и как проводить профилактику системы

При сгорании топливно-воздушной смеси в цилиндрах двигателя температура газов достигает 2500 °С, а в среднем при работе двигателя составляет около 900 °С. Это вызывает сильный нагрев деталей и может привести к заклиниванию поршней, обгоранию головок клапанов, выгоранию смазки, выплавлению подшипников и другим неисправностям.

Чтобы этого не происходило, в двигателе необходимо поддерживать определенный тепловой режим. Его обеспечивает система охлаждения. Разбираемся, как она работает, и что будет, если она выйдет из строя.

Воздушная и жидкостная системы охлаждения


Существуют две разновидности систем охлаждения двигателя: воздушная и жидкостная. В современном автотранспорте, как правило, применяют жидкостную систему охлаждения — воздушную же используют в мототехнике и небольших генераторных установках.
Воздушная система охлаждения
Как следует из названия, в такой системе для отвода излишнего тепла от двигателя используется поток воздуха. Это конструктивное решение широко применяли в 60-70-х годах ХХ века такие производители как Fiat, Volkswagen и другие — в том числе, отечественный «Запорожец».

При воздушной системе охлаждения тепловой режим двигателя определяют температурой масла в системе смазки, которая должна находиться в пределах 70-110 °С.

Основные недостатки воздушной системы охлаждения:

  • значительные затраты мощности на привод вентилятора;
  • повышенный уровень шума при работе;
  • ухудшение наполнения цилиндров топливно-воздушной смесью;
  • воздушные потоки направляются неравномерно — это может привести к локальному перегреву;
  • большая тепловая напряженность отдельных деталей может привести к перегреву двигателя.
Именно поэтому современные производители отдают предпочтение жидкостной системе охлаждения.
Жидкостная система охлаждения
Эту систему охлаждения устанавливают на современные автомобили с двигателем внутреннего сгорания. Детали двигателя, подвергающиеся нагреву, охлаждаются при помощи жидкости. В отдельных случаях это может быть вода или тосол, но самое распространенное решение — антифриз.

Для предупреждения неполадок обычному автовладельцу достаточно знать несколько ключевых моментов.

Первые признаки неисправности системы охлаждения


 Очевидные признаки неисправности одного из агрегатов системы охлаждения:
  • утечка охлаждающей жидкости;
  • резкий сладковато-едкий запах в салоне автомобиля при включении системы отопления;
  • плохой прогрев двигателя в холодную погоду;
  • перегрев двигателя.

Столкнулись с чем-то из вышеописанного — пора на станцию техобслуживания. Там проведут диагностику и определят неисправный узел.

Что же может пойти не так в работе системы охлаждения?

Сломался термостат


Начнем с неисправности термостата — самой неявной среди очевидных проблем системы охлаждения.

Основная роль термостата — это регулирование циркуляции охлаждающей жидкости по одному из «кругов»: малому, минуя радиатор охлаждения при первоначальном прогреве двигателя, или большому, по достижении его рабочей температуры.

Когда клапан термостата открыт, охлаждающая жидкость движется по большому кругу, когда закрыт — по малому. Обычно эта деталь меняет свое положение в зависимости от температуры двигателя. Сломанный же термостат «заклинивает» в одном из этих двух состояний.

Если клапан термостата «завис» в полностью или частично открытом состоянии — до рабочей температуры двигатель будет прогреваться долго, а в зимнее время рабочая температура может быть и не достигнута. Но хуже, если Если термостат заклинил в полностью закрытом положении — возможен перегрев двигателя в любом режиме движения при любой температуре воздуха и даже в небольшой мороз. Если термостат открывается, но не до конца, двигатель перегревается, но может и не «закипеть» — все зависит от режима эксплуатации машины.

Если индикатор температуры двигателя неохотно двигается вверх при прогреве либо зашкаливает в красной зоне, вероятнее всего, возникла проблема с термостатом.

Нарушилась герметичность системы охлаждения


Система охлаждения имеет множество патрубков, шлангов, стыковых соединений и уплотнительных прокладок. Каждое из таких соединений может стать брешью в системе — тогда охлаждающая жидкость будет протекать.

Последствия варьируются от траты средств на покупку охлаждающей жидкости «на долив» до перегрева и капитального ремонта двигателя.

Основные причины нарушения герметичности системы охлаждения:

  • эксплуатационный износ деталей;
  • некачественный ремонт;
  • заводской брак.

Увидели под машиной водянистую жидкость, а уровень антифриза в расширительном бачке уменьшается? Нужно искать течь.

Сломалась водяная помпа


Поломка водяной помпы может быть выявлена по схожим с предыдущими неисправностями признакам. Однако такой дефект быстрее других приведёт к печальным последствиям.

Если помпа сломана, охлаждающая жидкость не будет циркулировать по двигателю, регулируя его температуру. Индикатор температуры будет в красной зоне, и даже при самой краткосрочной эксплуатации неизбежен перегрев двигателя.

«На глаз» проблему определить сложно, но некоторые первичные признаки можно обнаружить на плановом техническом осмотре:

  • посторонние шумы из подкапотного пространства;
  • течь охлаждающей жидкости из-под корпуса водяной помпы;
  • повышенная температура двигателя.
Перегрев двигателя — проблема, которая может обернуться самыми печальными последствиями:
  • эмульсия (смешивание) охлаждающей жидкости и моторного масла в результате разрыва прокладки ГБЦ от перегрева;
  • капитальный ремонт цилиндро-поршневой группы, замена коренных и шатунных вкладышей.

Предупредить такие поломки помогает регулярный технический осмотр и своевременная замена узлов.

Профилактика системы охлаждения


Регламент проверки, обслуживания и замены узлов системы охлаждения зависит от производителя и прописан индивидуально под каждый автомобиль в сервисной книжке.

Конкретный пробег или период замены жидкостей и агрегатных узлов нужно уточнять в инструкции по эксплуатации или в сервисной книжке. 


Регулярно осматривайте все узлы системы охлаждения на предмет дефектов. Своевременная замена отслуживших свой срок деталей спасет вас от больших затрат в будущем.

Система охлаждения двигателя внутреннего сгорания автомобиля: виды, устройство, неисправности


Система охлаждения двигателя внутреннего сгорания автомобиля (СО) – это конструктивное решение, которое отводит от двигателя транспортного средства излишки тепла и передаёт их в окружающую среду, а также позволяет двигателю оперативно прогреться. Именно возможность быстро прогреться, достигнув оптимального уровня рабочей температуры, и поддержка этой температуры на заданном уровне — одни из важнейших факторов эффективной работы ДВС. 

Назначение системы охлаждения двигателя — предотвращение повреждений деталей двигателя автомобиля в результате его перегрева и износа, охлаждение отработавших газов, масла в системе смазки.

Виды систем охлаждения двигателя (жидкостная и воздушная)

Системы охлаждения  (СO) ДВС транспортных средств бывают разных видов:
  • Воздушными.
  • Жидкостными (функционирующими на воде, антифризах).
  • Гибридными.
Воздушная СО – это конструкция, которая обеспечивает отвод излишек тепла от цилиндров и стенок камер с помощью принудительного потока воздуха. Принуждение возникает за счет вентиляторов. Они могут быть автономными или объединёнными с маховиком. Воздух может нагнетаться или просасываться. 


 
Наиболее активно воздушные системы охлаждения двигателя устанавливались на авто в шестидесятые годы прошлого века. В том числе, такое решение было популярно у заводов, выпускающих Volkswagen, Citroën, Honda, Porsche.

Но со временем у легковых автомобилей двигатели с воздушным охлаждением стало возможно встретить всё реже. Это легко объяснить тем, что большинство легковых авто, появившихся позже, в том числе, современные легковые авто – это, преимущественно, переднеприводные модели с поперечным расположением ДВС. При такой системе трудно организовать эффективную систему воздушного охлаждения.

К тому же, при воздушном охлаждении производители вынуждены существенно увеличивать габариты двигателя, а вместе с ним возрастает и уровень шума.

Но на сельскохозяйственные, коммунальные машины, скутера, мотоблоки такие СО по-прежнему ставят. Правда, даже у тракторов их можно встретить уже очень редко.

Вторая же разновидность СО –  жидкостная система охлаждения двигателя – это система, где есть промежуточный теплоноситель (жидкость – антифриз). Именно антифриз основательно «прорабатывает» толщь стенок блока цилиндров. Роль отводящего агента у большинства СО такого типа при этом опять-таки играет воздух. Поэтому часто системы называют не просто жидкостными, а комбинированными, гибридными. С точки зрения физики, это действительно верно (и более грамотно), но при этом, так как жидкостные системы в чистом виде (без отводящего агента в виде воздуха) сейчас не используются (первые системы были именно непосредственно жидкостными и работали исключительно на воде), в том, что жидкостными и гибридными МО называют на практике одни и те же решения, ничего зазорного нет. 

И современные автомобилисты, и механики жидкостными СО называют, как правило, именно гибридные решения. Те, где задействован и воздух, и антифриз.

Потоки жидкостной СО

Жидкостные системы охлаждения двигателей могут быть с параллельными, последовательными и смешанными потоками.

Параллельные потоки. Антифриз под давлением поступает в блок цилиндров, проходит через отверстия прокладки головки блока и в головку блока. 

Последовательные потоки. Жидкость поступает к задней части блока цилиндра, а затем перетекает в головку блока цилиндров.

Здесь она течет вокруг каждого цилиндра и только потом через перекрестные проходы попадает во коллектор впуска.

Смешанные потоки. У некоторых ДВС потоки теплоносителя объединены. Вентиляционные отверстия берут на себя функцию выпуска пара.

Устройство системы охлаждения двигателя


Сначала затронем конструирование устройства системы охлаждения. При конструировании системы охлаждения производители учитывают целый комплекс факторов: 
  • тепловая мощностью ДВС (быстрота выделения тепла),
  • габаритов радиатора, вентилятора и водяной помпы, 
  • давления в СО,
  • конструктивных особенностей термостата.
Если проектируется жидкостная система, учитывается тип охлаждающей жидкости – антифриза: этиленгликолевый (карбоксилатный, лобридный, комбинированный), пропилен-гликолевый. 

Если проектируется воздушная СО, обязательно учитывается температура и влажность окружающего ДВС воздуха.

При конструировании воздушных систем специалисты заинтересованы, в первую очередь, обеспечить подачу воздуха к:

  • перемычкам между гнездами клапанов (самым горячим местам головки цилиндров), если речь касается бензиновых ДВС.
  • форсункам, если в фокусе внимания – дизельные двигатели.

Обязательно учитываются параметры оребрения двигателя. Идеальный вариант – брать в расчет показатели аэродинамического сопротивления оребрения двигателя, но на практике чаще берется всё-таки удельная поверхность оребрения. Учитывать показатели аэродинамического сопротивления, когда речь идёт о достаточно простой и недорогой технике достаточно нерационально. И проще пожертвовать именно этим параметром.

Как устроена система охлаждения двигателя автомобиля, работающего на антифризе?


В зависимости от того, какое охлаждение – воздушное или на антифризе, отличается схема системы охлаждения двигателя.

Итак, общее устройство системы охлаждения двигателя автомобиля, работающего  на антифризе состоит из следующих элементов:

1. «Водяная рубашка».  Полости между двойными стенками двигателя, имеющие сообщение друг с другом. Расположены в зонах присутствия избытка тепла. Фактически это всё пространство вокруг цилиндров ДВС, заполненное охлаждающей жидкостью.

 
 
2. Термостат. Специальный клапан между «рубашкой» ДВС и входным патрубком устройства радиатора. Когда клапан открывается, для охлаждающей жидкости возникают все условия, чтобы она беспрепятственно попадала в радиатор. Излишки жидкости возвращаются в водяную рубашку через обводный канал. В зависимости от конструктивных особенностей СО, модели силового агрегата, компоновки ДВС термостат может иметь разную локацию. Чаще всего термостат расположен в зоне выхода антифриза из головки блока цилиндров.
 

 
3. Радиатор. Устройство, предназначенное непосредственно для отдачи (отвода) тепла в атмосферу и охлаждения жидкости внутри каналов. Представляет собой конструкцию из трубок, спаянных в виде прямоугольника, крепящегося на двух бачках. Изготавливается из металла (меди, алюминия), нескольких металлов (медь + латунь), комбинации металла и пластика. Большинство современных радиаторов – с алюминиевой сердцевиной с бачками из армированного пластика. В этом случае деталь обладает более высокими показателями коррозионной стойкости и теплопроводности. Устройство монтируется в зоне, которая лучше всего обдувается. Идеальный вариант – зона в подкапотном пространстве спереди автомобиля (причем к такому конструкционному решению инженеры нередко прибегают даже, если ДВС имеет заднее расположение). У некоторых автомобилей радиаторы устанавливаются возле боковых стенок авто. Но как правило, в этом случае о обдуве заботится воздухозаборник, а радиаторов – несколько. Такой вариант можно встретить у спорткаров. 

 

Теплоноситель может поступать в радиатор сверху и направляться вниз в основной бочок, а может двигаться от одной стороны устройства к противоположной его стороне (СО с поперечным потоком). На подавляющее большинство современных СО монтируют радиаторы именно с поперечным потоком.

У большинства радиаторов горловина имеет крышку, оснащённую подпружиненным клапаном, предназначенного для герметичного закрытия вентиляционных каналов СО. Это конструктивное решение необходимо для поддержания оптимального рабочего давления. Наиболее распространёнными и внушающими доверие пользователям радиаторами являются устройства торговых марок Behr Hella, DENSO, LUZAR, Stellox, SAT, AVA.

4. Вентилятор – устройство, помогающее усилить поток набегающего воздуха на радиатор. Воздушный поток направлен по направлению к двигателю.  Запускается за счёт муфты (электромагнитной, гидравлической от сигнала датчика при превышении порогового значения температуры охлаждающей жидкости.  На большинстве современных транспортных средств стоят электровентиляторы: один или несколько (один непосредственно для охлаждения, другой – для работы с высокими температурами).  На транспортных средствах с продольным расположением ДВС и задним приводом также можно встретить термостатический вентилятор охлаждения (вентилятор с термостатической пружиной). Он запускается ремнем от коленчатого вала.
 
    
5. Помпа — центробежный насос. Именно от помпы зависит, будет ли в системе обеспечена бесперебойная циркуляция жидкости (запускаются, чаще всего ремнем – от коленчатого или распределительного вала, шестернями или дополнительной помпой , работающей от электронного блока управления.

6. Расширительный бачок с подпружиненными клапанами. Присутствует у систем с радиатором без заливной горловины.

7.Температурный датчик. Присутствует у авто с электронным блоком управления. Сигналы с датчика поступают непосредственно на ЭБУ, а затем на исполнительные устройства (например, вентилятор).  

Устройство воздушной СО

Если же перед нами устройство воздушной системы охлаждения, где теплоносителем выступает непосредственно поток воздуха, то устройство включает следующие элементы:
  • вентилятор, состоящий из диффузора с неподвижными лопастями (направляют воздух) и ротора. Как правило, запускается при помощи ремня и работает от шкива коленвала охладительные ребра цилиндров и головки (или головок), 
  • съемный кожух, 
  • дефлекторы (монтируются непосредственно над вентканалом) и контрольные приборы. 

Принцип работы системы охлаждения двигателя автомобиля на антифризе

Принцип работы системы зависит от того, что является теплоносителем.

Работа системы охлаждения двигателя на антифризе:

  • Антифриз циркулирует (движется по маршруту) принудительно. 
  • Движение жидкости производится через «рубашку охлаждения» двигателя.
  • Охлаждение ДВС и нагрев охлаждающей жидкости осуществляются синхронно. 
  • Антифриз к водяной рубашке движется от первого цилиндра к последнему или от выпускного коллектора к впускному (в зависимости от потоков)
  • Жидкость циркулирует по малому (до нагрева) или большому кругу (после нагрева).Свой путь антифриз начинает  по большому кругу. Путь к маломому кругу до достижения определённой температуры  жидкости недоступен, это происходит благодаря закрывающемуся клапану. Когда температура, напротив, падает, то клапан  срабатывает снова, и рабочим путем антифриза, как и в начале работы, становится  малый круг.
  • В момент запуска ДВС антифриз  – холодный. При включении системы он нагревается, проходит через радиатор, охлаждается встречным потоком воздуха, в том числе, при необходимости  –  потоком воздуха от вентилятора.
Проходя путь через рубашку охлаждения блока цилиндров и головки цилиндров, жидкость в СО сначала увеличивается, а затем после прохождения радиатора охлаждается до начального уровня. 
  • Чаще всего у ДВС горячая охлаждающая жидкость выходит из корпуса термостата (температурно-регулирующего клапана), протекает через радиатор поток жидкости охлаждается потоком воздуха, 
  • Назад жидкость возвращается через выходной патрубок основного бачка и через шланг идёт к входному патрубку циркуляционного насоса. Он и прогоняет поток жидкости через рубашку охлаждения двигателя. На некоторых двигателях (например, Chrysler и General Motor’s) альтернативой термостату выступает водяной насос. 

Воздушное охлаждение

Схема работы СО следующая:

  • Вентилятор создает поток воздуха
  • Наружная область блоков цилиндров и головки омываются мощным потоком воздуха,
  • Излишки тепла направляются в атмосферу.

Важно! Воздушный поток целенаправленно направляется на наиболее нагреваемые детали – цилиндры и головки. Степень интенсивности охлаждения зависит от того, какие стоят вентиляторы, и как организовано направление потока воздуха. Распределить воздух на все детали ДВС помогают тонкие пластины-дефлекторы.

Степень интенсивности охлаждения, а значит, и результат, напрямую зависит от организации направления потока воздуха и расположения вентилятора.

Неисправности в системе охлаждения

Не секрет, что именно на СО приходится около 25 – 30% неисправностей ДВС. И, если регулярно не проводить диагностику, не принимать меры, можно «нарваться» на дорогостоящий ремонт. 

Если же всё делать своевременно, то решением проблемы может стать замена небольшой детали или даже просто регулировка одного из узлов.

Популярные неисправности в системе охлаждения:

  • Проблемы со шлангами. Износ, потеря герметичности, повреждение, расслаивание,  набуханием материала, влекущее за собой изменение диаметра шланга. Если шланг получит повреждение во время работы двигателя, вся охлаждающая жидкость будет утеряна. Для того, чтобы решить проблему со шлангом, чаще всего требуется его замена, но иногда достаточно решить проблему только с хомутовым соединением.
  • Нарушение герметичности радиатора. Чаще всего под воздействием камней, противогололедных реагентов. Практика показала, что чаще радиатор «летит» в системах без кондиционера (если он есть те же на себя часто берет теплообменник).
  • Зависание» термостата. Если «зависание» происходит в закрытом состоянии, ДВС начинает перегреваться, если открытом – будет проблема с нагревом. Иногда для решения проблемы достаточно регулировки, но часто может потребоваться и замена этого устройства.
  • Течь расширительного бачка (нередкое явление для тех схем системы охлаждения двигателя, где бачок работает под давлением).
  • Потеря герметичности пробки радиатора.  При этой неисправности система не сможет обеспечивать повышение температуры кипения жидкости. В зависимости от ситуации проблема может решаться механическим способом, или требуется замена пробки. К пробке ни в коем случае нельзя относится халатно. Именно от неё зависит, удастся ли удержать нужное давление в СО.
  • Воздушная пробка. Приводит к перегреву двигателя либо нарушению прогрева салона (то есть двигатель может хорошо прогреваться, а тепло в салон перестаёт поступать). Для диагностики проверяют уровень антифриза в расширительном бачке, проводят визуальный осмотр. Для решения проблемы ус старых транспортных средств на радиаторе откручивают  отточенных навыков: нужно снять пластиковую защиту, демонтировать хомут, подать в бачок воздух посредством компрессора, провести проверку на отсутствие пузырьков воздуха, накинуть на штуцер патрубок, монтировать специальную пробку и запускают двигатель, у современных авто в большинстве случае решение проблемы требует затянуть хомут, довести антифриз до оптимального уровня.
  • Обрыв ремня вентилятора. Распространённая поломка у мототехники, коммунальной техники, где стоит воздушная СО. Об этой неисправности у большинства транспортных средств сигнализирует контрольная лампа. Проблема решается путём замены ремня.
  • Загрязнение патрубков, влекущее за собой попадание в СО посторонних примесей и её выход из строя. Проблема решается путём промывки, удаления ржавчины, шлака, накипи, остатков масла, силикатного геля.

Как систематизировать знания и получить практические навыки по теме?

Изучить тему «Системы смазки и охлаждения» подробно поможет лицензионный обучающий продукт «Автомобильные основы» на платформе LCMS ELECTUDE.

Видеообзор этого обучающего продукта для вас доступен прямо сейчас:

Огромное преимущество использование платформы состоит в том, что вы не просто последовательно получаете необходимый набор знаний, а имеете возможность поработать с устройствами на практике, отточить навыки диагностики и ремонта (платформа располагает встроенным тренажёром).

Платформа адаптивна как для проведения занятий в аудитории, так и дистанционного обучения. Очень удобно, что система располагает продуманной системой тестов. Можно не просто изучить материал, а проконтролировать, как он усвоен, какой реальный прогресс при изучении системы охлаждения двигателя.

Как это работает: система охлаждения ДВС

    Сегодня из нашей постоянной рубрики «Как это работает» Вы узнаете устройство и принцип работы системы охлаждения двигателя, для чего нужен термостат и радиатор, а так же почему не получила широкого распространения воздушная система охлаждения.

 

 

 

 

 

 

    Система охлаждения двигателя внутреннего сгорания осуществляет отвод теплоты  от деталей двигателя и передачу её в окружающую среду. Кроме основной функции система выполняет ряд второстепенных: охлаждение масла в системе смазки; нагрев воздуха в системе отопления и кондиционирования; охлаждение отработавших газов и др.


    При сгорании рабочей смеси, температура в цилиндре может достигать 2500°С, в то время как рабочая температура ДВС составляет 80-90°С. Именно для поддержания оптимального температурного режима существует система охлаждения, которая может быть следующих типов, в зависимости от теплоносителя: жидкостная, воздушная и комбинированная. Следует отметить, что жидкостная система в чистом виде уже практически не используется, так как не способна длительное время поддерживать работу современных двигателей в оптимальном тепловом режиме.

 

 

    Комбинированная система охлаждения двигателя:


    В комбинированной системе охлаждения в качестве охлаждающей жидкости часто используется вода, так как имеет высокую удельную теплоемкость, доступность и безвредность для организма. Однако вода имеет ряд существенных недостатков: образование накипи и замерзание при отрицательных температурах. В зимнее время года в систему охлаждения необходимо заливать низкозамерзающие жидкости – антифризы (водные растворы этиленгликоля, смеси воды со спиртом или с глицерином, с добавками углеводородов и др.).

 

 

 

 

    Рассматриваемая система охлаждения состоит из: жидкостного насоса, радиатора, термостата, расширительного бачка, рубашки охлаждения цилиндров и головок, вентилятора, датчика температуры и подводящих шлангов.

    Стоит оговорить, что охлаждение двигателя принудительное, а значит в нём поддерживается избыточное давление (до 100 кПа), вследствие чего температура кипения охлаждающей жидкости повышается до 120°С.

 

 

    При запуске холодного двигателя происходит его постепенный нагрев. Первое время охлаждающая жидкость, под действием жидкостного насоса, циркулирует по малому кругу, то есть в полостях между стенками цилиндров и стенками двигателя (рубашка охлаждения), не попадая в радиатор.  Это ограничение необходимо для быстрого введения двигателя в эффективный тепловой режим. Когда температура двигателя превышает оптимальные значения, охлаждающая жидкость начинает циркулировать через радиатор, где активно охлаждается (называют большим кругом циркуляции).

 

малый круг циркуляции

большой круг циркуляции 

 

 

 

    Далее рассмотрим отдельно каждый элемент системы охлаждения двигателя.

 

 

    ТЕРМОСТАТ.  По своей сути, это маленькое устройство работает как автоматический клапан. Термостат в закрытом состоянии не позволяет охлаждающей жидкости проникнуть в радиатор. Но при температуре среды 85-95°С он открывается и тогда циркуляция жидкости проходит по большому кругу (через радиатор). Причем чем выше температура среды, тем шире термостат открывается, что увеличивает его пропускную способность.

    Устройство и принцип работы:

 

    Термостат сделан из латуни и меди. Состоит из цилиндра наполненного смесью воска и пыли графита (различные производители применяют свои собственные разработки и компоненты). В цилиндр с смесью вдавлен штырь и соединен с клапаном. Нагреваясь, искусственный воск значительно расширяется, выталкивая штырь, который открывает проход охлаждающей жидкости к радиатору. Стальная пружина, по мере остывания рабочего тела, возвращает клапан в закрытое состояние.
   

    ЖИДКОСТНОЙ НАСОС. Насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. Чаще всего применяют лопастные насосы центробежного типа.

 

     Вал 6 насоса установлен в крышке 4 с использованием подшипника 5. На конце вала напрессована литая чугунная крыльчатка 1. При вращении вала насоса охлаждающая жидкость через патрубок 7 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя.

     

    РАДИАТОР обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. Радиатор состоит из верхнего и нижнего бачков и сердцевины. Его крепят на автомобиле на резиновых подушках с пружинами.

    Наиболее распространены трубчатые и пластинчатые радиаторы. У первых сердцевина образована несколькими рядами латунных трубок, пропущенных через горизонтальные пластины, увеличивающие поверхность охлаждения и придающие радиатору жесткость. У вторых сердцевина состоит из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных между собой по краям гофрированных пластин. Верхний бачок имеет заливную горловину и пароотводную трубку. Горловина радиатора герметически закрывается пробкой, имеющей два клапана: паровой для снижения давления при закипании жидкости, который открывается при избыточном давлении свыше 40 кПа (0,4 кгс/см2), и воздушный, пропускающий воздух в систему при снижении давления вследствие охлаждения жидкости и этим предохраняющий трубки радиатора от сплющивания атмосферным давлением. Используются и алюминиевые радиаторы: они дешевле и легче, но теплообменные свойства и надёжность ниже.

 


    Охлаждающая жидкость «бегая» по трубкам радиатора, охлаждается при движении встречным потоком воздуха.

 

 

    ВЕНТИЛЯТОР усиливает поток воздуха через сердцевину радиатора. Ступицу вентилятора крепят на валу жидкостного насоса. Они вместе приводятся во вращение от шкива коленчатого вала ремнями. Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор. Чаще всего применяют четырех- и шестилопастные вентиляторы.

 

   
   

    РАСШИРИТЕЛЬНЫЙ БАЧОК служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери.

 

    ДАТЧИК температуры охлаждающей жидкости относится к элементам управления и предназначен для установления значения контролируемого параметра и дельнейшего его преобразования в электрический импульс. Электронный блок управления получает данный импульс и посылает определенные сигналы исполнительным устройствам. При помощи датчика охлаждающей жидкости компьютер определяет количество топлива, требуемое для нормальной работы ДВС. Также, основываясь на показаниях датчика температуры охлаждающей жидкости блок управления, формирует команду включения вентилятора.
 

 

 

    Воздушная система охлаждения:

 

    В воздушной системе охлаждения отвод теплоты от стенок камер сгорания и цилиндров двигателя осуществляется принудительно потоком воздуха, создаваемым мощным вентилятором. Эта система охлаждения является самой простой, так как не требует сложных деталей и систем управления. Интенсивность воздушного охлаждения двигателей существенно зависит от организации направления потока воздуха и расположения вентилятора.


    В рядных двигателях вентиляторы располагают спереди, сбоку или объединяют с маховиком, а в V- образных — обычно в развале между цилиндрами. В зависимости от расположения вентилятора цилиндры охлаждаются воздухом, который нагнетается или просасывается через систему охлаждения.


    Оптимальным температурным режимом двигателя с воздушным охлаждением считается такой, при котором температура масла в смазочной системе двигателя составляет 70… 110°С на всех режимах работы двигателя. Это возможно при условии, что с охлаждающим воздухом рассеивается в окружающую среду до 35 % теплоты, которая выделяется при сгорании топлива в цилиндрах двигателя.


    Воздушная система охлаждения уменьшает время прогрева двигателя, обеспечивает стабильный отвод теплоты от стенок камер сгорания и цилиндров двигателя, более надежна и удобна в эксплуатации, проста в обслуживании, более технологична при заднем расположении двигателя, переохлаждение двигателя маловероятно. Однако воздушная система охлаждения увеличивает габаритные размеры двигателя, создает повышенный шум при работе двигателя, сложнее в производстве и требует применения более качественных горюче-смазочных материалов. Теплоёмкость воздуха мала, что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.

 

 

Система охлаждения двигателя: как она работает?

При работе автомобиля сгорает топливная смесь, освобождая огромное количество тепла. Чтобы не перегревался и не подвергался разрушению двигатель, в транспортные средства устанавливается система охлаждения (СО), состоящая из нескольких элементов, о функциях каждого из них расскажем подробно.

Работа системы охлаждения

Как только запускается мотор, начинают вращение лопасти помпы. Они принуждают охлаждающую жидкость (ОЖ) циркулировать по малому кругу обращения СО. Мотор прогревается и выходит на отметки рабочей температуры. После этого открывается термостат, ОЖ переходит в режим циркуляции по большому кругу СО, уже включая и радиатор. Уже в охлаждённом виде технические жидкости попадают в рубашку мотора. Если температура ОЖ поднимается до 100 градусов и выше, включается вентилятор, усиливающий воздушные потоки, которые проходят через радиатор, тем самым, делая процесс охлаждения намного эффективней. У автомобилей, выпущенных пару десятков лет назад, вентилятор соединён с валом помпы ремнём, и потому вращение происходит постоянно.


Что заливать в систему охлаждения?

В качестве ОЖ используются тосол или антифриз. Они имеют в составе химические элементы и соединения, не позволяющие воде превращаться в лёд даже при самых низких температурах. ОЖ также содержат вещества, благодаря которым предотвращается:

  • Вспенивание;
  • Появление коррозии и ржавчины;
  • Смазывается водяной насос.

А вот воду использовать в качестве ОЖ нельзя, поскольку она очень скоро разрушит металл СО. Нагреваясь, ОЖ увеличивается в объёме, и её излишки начинают выбрасываться в расширительный бачок, соединённый с горловиной радиатора гибким шлангом. Через расширительный бачок ОЖ заливают и, при необходимости, доливают.

В салоне машины есть ещё один радиатор, так называемая печка. Зимой автовладельцы, как правило, открывают заслонку печки и нагретая ОЖ циркулирует по теплообменнику, согревая и воздух салона в автомобиле.

СО довольно проста и практически не требует никакого обслуживания. При отсутствии утечек ОЖ система работает без проблем 2 года. По истечении двух лет ОЖ в системе следует заменять, и при этом постоянно отслеживать состояние патрубков: резина от старости может пересохнуть и растрескаться, и произойти это может в дороге. Тогда продолжать движение будет невозможно. Следовательно, через каждые 5 – 6 лет надо производить замену всех резиновых патрубков.

В транспортных средствах, выпущенных недавно, СО ещё работает и для:

  • Охлаждения масла;
  • Воздуха системы вентиляции;
  • Турбонаддува;
  • Кондиционера;
  • Печки салона;
  • Газа в рециркуляционной системе;
  • Рабочей жидкости АКПП.

Виды систем охлаждения

Нужно отметить, что современное автомобилестроение использует три вида систем охлаждения:

  • Жидкостную;
  • Воздушную;
  • Комбинированную.

Жидкостная СО, которая отводит тепло потоком жидкости, применяется чаще всех остальных. Она функционирует с гораздо меньшим шумом, чем её воздушная сестра, причём, равномерно и очень эффективно охлаждает детали мотора.

Типичные поломки в системе охлаждения

Поломки СО не относятся к неисправностям, с которыми движение запрещено, однако, каждый разумный автовладелец весьма заинтересован в продлении срока службы своего железного коня, и его сердца – двигателя. И в первую очередь, это касается необходимости интенсивного отвода тепла.

К самым распространённым причинам поломок в СО относится:

  • Течь;
  • Не герметичность.

Это может произойти из-за резкой смены температуры окружающей среды. Ещё одна популярная поломка – закоксованность шлангов и патрубков системы. Они теряют эластичность под воздействием тех же высоких температур. ОЖ может протекать и ввиду повреждений радиатора от удара, или в результате химического воздействия составляющими тосола. Из строя может выйти и термостат. Он находится в контакте с жидкостью, и потому коррозирует, а потом может и заклинить. Серьёзная неприятность для системы – поломка помпы, или циркуляционного насоса из-за некачественной запчасти, или износа. Понять и уловить это можно по характерному свисту подшипника. Это означает, что пришло время замены циркуляционного насоса. Иногда СО банально засоряется из-за отложения солей в каналах. Циркуляция ОЖ нарушается, отвод тепла при этом ухудшается, что приводит к перегреву двигателя.

Уход за системой охлаждения

Элементарные правила эксплуатации СО и их соблюдение позволяет автовладельцам избегать, или минимизировать негативное воздействие неисправностей на работу машины. Следует постоянно контролировать уровень охлаждающей жидкости в системе. Её объём может меняться, а зависит это от условий эксплуатации автомобиля. Если уровень ОЖ понижается постоянно, значит, нужно искать место утечки тосола. Нередко пятна ОЖ обнаруживаются на узлах и агрегатах в моторном отсеке. Перегрев двигателя может происходить, когда:

  • Заклинивает термостат,
  • Засоряются каналы,
  • Уровня ОЖ в системе недостаточно.

Причину же недостаточного нагрева двигателя следует искать в заклиненном термостате.

Система охлаждения автомобиля | «Оптимум Авто» — сеть автосервисов в Москве

Услуга Цена, р.
Диагностика системы охлаждения от 450
Замена радиатора от 2250
Замена термостата от 1500
Замена антифриза 1050
Замена помпы от 2250

    

Система охлаждения поддерживает оптимальный тепловой режим двигателя путем регулируемого отвода теплоты от наиболее нагревающихся деталей.

При недостаточном отводе теплоты двигатель перегревается, из-за чего:

• не развивает максимальной мощности

• увеличивается расход топлива

• быстро изнашиваются детали из-за недостаточной смазки

Принудительный отвод теплоты в двигателях осуществляется с помощью воздушной и жидкостной систем охлаждения (воздух и жидкость). Жидкостные системы охлаждения более эффективны в работе, создают меньший шум, и обеспечивает лучший пуск в условиях низких температур.

Жидкостная система охлаждения двигателя состоит из следующих элементов:

• рубашки охлаждения — пространства, вокруг цилиндров двигателя и их головок, заполненного охлаждающей жидкостью

• радиатора — устройства, служащего для охлаждения нагретой жидкости. Это теплообменник, в котором теплота жидкости передается потоку воздуха

• патрубков, соединяющих рубашку охлаждения и радиатор

• жидкостного насоса центробежного типа, обеспечивающего циркуляцию жидкости

• термостата — автоматического клапана, способствующего ускорению прогрева двигателя и регулирующего количество жидкости, проходящей через радиатор. Двигатель не прогрет — закрыт клапан термостата — работает малый круг циркуляции. Двигатель прогрет — клапан термостата открывается и жидкость циркулирует по большому кругу

• вентилятора, служащего для повышения скорости и количества воздуха, проходящего через радиатор

• жалюзей, поддерживающих тепловой режим двигателя

• заливной горловины с пробкой (в пробке имеются клапаны, через которые внутренняя система охлаждения сообщается с атмосферой)

В закрытых системах охлаждения поддерживается избыточное давление (до 100 кПа) вследствие чего температура кипения охлаждающей жидкости повышается до 120°С.

Оптимальным температурным режимом двигателя является такой, при котором температура охлаждающей жидкости в головке блока цилиндров находится в пределах 80-100°С.

Некоторые марки автомобилей оснащены предпусковыми подогревателями, что облегчает пуск двигателя и замедляет изнашивание цилиндров и поршней.

   

Услуги:

Пять советов по подготовке системы охлаждения автомобиля к зимней эксплуатации

Наступление зимы всегда приносит множество проблем автомобилистам, и эксплуатация машины в морозы требует некоторой заблаговременной подготовки. Редакция сайта Тарантас Ньюс дала несколько советов о том, как правильно подготовить систему охлаждения автомобиля к зимней эксплуатации.

Проверка патрубков

Начать проверку системы охлаждения стоит с патрубков и уплотнителей. Патрубки должны быть эластичными и легко «прожиматься», при этом на них не должно быть трещин или вздутий. Даже целый с виду патрубок может подтекать на местах соединений из-за того, что хомут в ходе предыдущего ремонта был сильно затянут. Это может стать причиной появления неприятной течи, и со временем такой элемент может не выдержать нагрузок. Поэтому лучше заменить подозрительные патрубки и при этом не переусердствовать при их установке.

Охлаждающая жидкость

Многие автолюбители любят заменять технические жидкости в автомобиле ближе к зиме, ведь никто не хочет заниматься дополнительным ремонтом в морозы. Антифриз рекомендуется менять примерно раз в два года или раз каждые 40–50 тыс. километров пробега. Однако иногда его нужно менять раньше, ведь его состояние может ухудшаться в зависимости от условий эксплуатации автомобиля. Сильное изменение цвета или наличие сильного осадка в бачке красноречиво намекают на замену. Также нельзя забывать, что если приходилось доливать воду в систему охлаждения, то необходимо менять всю жидкость, поскольку вода может стать причиной появления коррозии, а зимой она может попросту замерзнуть.

Контроль за состоянием радиатора

Ну и конечно же внимания требует радиатор охлаждения. Даже с исправной и герметичной системой машина может перегреваться, поскольку после жаркого лета радиатор может быть плотно забит листьями, пухом и насекомыми, что естественно ухудшает отвод тепла. Для очистки можно просто промыть его из шланга, только необходимо проследить за тем, чтобы напор воды был не слишком мощным, ведь это может повредить тонкие теплоотводящие пластины. Конечно же можно направиться на ближайший сервис, где специалисты оценят состояние радиатора и смогут очистить его более качественно.

Термостат

При неисправности термостата автомобиль может очень быстро перегреваться или же наоборот долго не сможет набрать рабочую температуру. Обе эти ситуации не способствуют продлению жизни силового агрегата, а особенно его неисправность может навредить зимой. Проверить работу данного элемента можно прямо на автомобиле. Стоит запустить автомобиль и дать поработать ему несколько минут, затем под капотом необходимо найти толстый патрубок, ведущий к верхней части радиатора. Он должен быть холодным при температуре около 70 градусов, однако стоит температуре подняться до 90 градусов, патрубок станет горячим. Это говорит о нормальной работе элемента. Если же прогрев происходит долго, и патрубок нагревается постепенно, то значит термостат «завис» в открытом положении. В случае обнаружения неисправности необходимо направиться в ближайший автосервис.

Проверка крышки бачка системы охлаждения

Иногда виновником проблем с системой охлаждения может оказаться не совсем очевидный элемент системы охлаждения — крышка расширительного бачка. Нередко с данной проблемой сталкиваются владельцы автомобилей отечественных марок, но и с продукцией иностранных брендов такое тоже случается.

Крышка является регулятором давления системы охлаждения, и поэтому при ее неправильной работе может образовываться повышенное давление в системе, что может стать причиной появления трещин на самом бачке, патрубках, или же патрубки сжимаются и не пропускают антифриз. Для проверки следует осмотреть крышку на предмет наличия трещин, сколов или повреждений уплотнителей. Если проблема обнаружена, то крышку лучше всего заменить.

Система охлаждения двигателя автомобиля

Внимание
Система охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения


Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.


Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор


Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.


Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.


Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.


Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

Примечание
Здесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

Примечание
При чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.


Рисунок 4.37 Работа термостата.

Система охлаждения станков для различных областей применения

Постоянная температура заготовки во время обработки также является ключевым фактором. Активное контролируемое охлаждение смазочно-охлаждающей жидкостью противодействует тепловложению в этой ситуации, предотвращая неправильные свойства заготовки и изменение допусков на размеры. Подвод тепла может привести к превышению допустимого допуска, а также к увеличению количества брака, поскольку требования к качеству заготовки больше не удовлетворяются.

Активное охлаждение заготовок не только повышает точность, но и продлевает срок их службы.В процессе производства сознательно регулируются изменения температуры, например, чтобы повлиять на свойства металлов. Режущие кромки сверл закалены, чтобы они могли просверливать чистые отверстия в течение длительного времени, а их валы относительно мягкие, поэтому они не отламываются легко. Твердость или гибкость металла регулируют путем его систематического нагревания и охлаждения. Нежелательные колебания температуры могут нарушить эти свойства.

Правильные, постоянные температуры позволяют дольше сохранять остроту режущей кромки сверл и фрезерных головок, а инструмент можно использовать для изготовления нескольких деталей, что снижает производственные затраты на единицу.

Наряду с требованием все более высокой точности перед инженерами-механиками стоит задача обеспечить постоянно более высокую производительность в постоянно сокращающихся пространствах. Это привело к замене пассивного воздушного охлаждения активным жидкостным охлаждением, прежде всего в приводных двигателях. То же самое произошло в автомобилестроении несколько десятилетий назад: старые двигатели с воздушным охлаждением превратились в сегодняшние гораздо более мощные двигатели с водяным охлаждением того же размера.

Вкратце: Высокая точность требует точного контроля температуры заготовок, инструментов и станков.Большая мощность приводит к более коротким периодам обработки из-за максимальных скоростей резания, но это приводит к более высоким тепловым нагрузкам. Для постоянного или более компактного пространства для установки требуется более эффективное жидкостное охлаждение вместо простого воздушного охлаждения. HYFRA предлагает идеальный чиллер для жидкостного охлаждения водой, маслом или эмульсией; или разработаем индивидуальное решение.

Шесть основных типов систем жидкостного охлаждения

Брюс Уильямс, региональный менеджер по продажам, Hydrothrift Corporation

Существует шесть основных типов систем охлаждения, которые вы можете выбрать, чтобы удовлетворить потребности вашей нагрузки в охлаждении.У каждого есть свои сильные и слабые стороны. Эта статья была написана для определения различных типов систем охлаждения и определения их сильных и слабых сторон, чтобы вы могли сделать осознанный выбор, исходя из ваших потребностей.

Существует шесть основных типов систем жидкостного охлаждения:

  1. Переход от жидкости к жидкости
  2. Сухая замкнутая система
  3. Сухая замкнутая система с охлаждением трима
  4. Испарительная система открытого типа
  5. Замкнутая испарительная система
  6. Система охлажденной воды

Системы жидкостного охлаждения

Самая простая из этих систем — это жидкостно-жидкостное охлаждение.В системе такого типа на вашем предприятии уже имеется достаточное количество охлаждающей жидкости определенного типа, но вы не хотите подавать эту охлаждающую жидкость в компрессор. Например: у вас есть вода из колодца, но вы не хотите пропускать воду из колодца через новый компрессор, потому что качество воды очень плохое (много растворенных твердых веществ, таких как железо, кальций и т. Д.), И у вас возникли проблемы с колодцем. вода, загрязняющая ваши теплообменники в прошлом.

Система жидкостно-жидкостного охлаждения идеально подходит для этой ситуации.Он использует воду из скважины с одной стороны промежуточного теплообменника и хладагент, такой как гликоль и воду, с другой стороны промежуточного теплообменника в замкнутом контуре для охлаждения компрессора. Тепло передается через промежуточный теплообменник без загрязнения теплообменника / ов. Загрязнение промежуточного теплообменника, вероятно, произойдет со стороны колодца, однако, если промежуточный теплообменник выбран правильно, его можно легко разобрать и очистить. Наиболее распространены промежуточные теплообменники пластинчато-рамного или кожухотрубного типа.При использовании жидкостно-жидкостной системы возможны температуры охлаждающей жидкости на 5 градусов выше охлаждающей «воды» установки. В приведенном выше примере скважинной воды, если скважинная вода доступна при температуре 55 F, система жидкостного охлаждения способна подавать хладагент 60 F на нагрузку.

Преимущество жидкостно-жидкостной системы охлаждения заключается в том, что ее покупка и установка относительно недороги. Компоненты могут быть установлены внутри или снаружи. Система недорога в использовании только с насосом с замкнутым контуром, использующим дополнительную энергию.Техническое обслуживание относительно простое: требуется лишь периодический осмотр, смазка и очистка теплообменника по мере необходимости.

Системы жидкостного охлаждения

К недостаткам системы жидкостно-жидкостного охлаждения относятся периодические простои системы охлаждения для очистки. Это можно компенсировать установкой резервного промежуточного теплообменника, который вводится в эксплуатацию, пока очищается первичный промежуточный теплообменник.Резервный теплообменник увеличивает стоимость, но обеспечивает непрерывную работу охлажденной нагрузки, пока выполняется очистка. Эта система требует регулируемой подачи охлаждающей жидкости, как в приведенном выше примере колодезной воды, для надлежащего охлаждения нагрузки. Бывают случаи, когда охлаждаемая нагрузка не работает с максимальной производительностью, и необходимо регулировать «воду» первичного охлаждения установки, чтобы гарантировать, что нагрузка не переохлаждена или переохлаждена.

Системы сухого охлаждения с замкнутым контуром

Система сухого охлаждения с замкнутым контуром очень похожа на радиатор в вашем автомобиле.В системе используется охладитель жидкости с воздушным охлаждением для передачи тепла от охлаждающей жидкости с замкнутым контуром, перекачиваемой через ряды оребренных труб, через которые вдувается / протягивается окружающий воздух. Основными компонентами замкнутой системы сухого охлаждения являются охладитель жидкости, который содержит теплообменник воздух-жидкость с вентилятором (вентиляторами), насос и блок управления, охлаждающую жидкость и устанавливаемые на месте трубопроводы системы. Охладитель жидкости замкнутой системы сухого охлаждения будет расположен снаружи и будет использовать окружающий воздух для отвода тепла.При использовании замкнутой системы сухого охлаждения возможны температуры охлаждающей жидкости на 5-10 F выше температуры окружающей среды по сухому термометру. Система относительно недорога в использовании только с насосом охлаждающей жидкости и вентилятором / вентиляторами охладителя жидкости, потребляющими энергию. Вентиляторы имеют термостатическое управление для регулирования температуры охлаждающей жидкости, чтобы нагрузка не переохлаждалась или не переохлаждалась. Периодическая очистка охладителя жидкости может потребоваться из-за грязных атмосферных условий на месте установки. Загрязнение охладителя жидкости обычно вызывается грязью, листьями, семенами хлопчатника и т. Д.

Замкнутые системы сухого охлаждения

Сильной стороной системы сухого охлаждения с замкнутым контуром является то, что она очень проста и относительно легка в установке. Потребление энергии относительно низкое, и им легко управлять. Техническое обслуживание обычно невелико, требуется лишь периодический осмотр, смазка и тестирование жидкости.

Слабость замкнутой системы сухого охлаждения заключается в том, что она зависит от атмосферного сухого термометра.Например, если температура сухого термометра в вашем офисе летом составляет 100 F, а вашему оборудованию требуется охлаждающая жидкость 90 F; в лучшем случае система может подавать на нагрузку только охлаждающую жидкость от 105 до 110 F. В этом случае вам потребуется дополнительное охлаждение, чтобы снизить температуру охлаждающей жидкости до 90 F.

Для эффективной работы замкнутой системы сухого охлаждения также необходим свободный чистый воздух. Это означает, что охладитель жидкости должен быть размещен в месте, на которое не влияют преобладающие ветры, не слишком близко к зданию, которое позволит теплому отработанному воздуху из охладителя жидкости рециркулировать обратно в охладитель жидкости, и, наконец, не в местах с высокой концентрацией пыли, грязи, листьев, семян и т. д.

Во многих случаях охладитель жидкости лучше всего размещать на крыше. Поскольку охладитель жидкости расположен за пределами охлаждающей жидкости, он также должен иметь концентрацию гликоля определенного типа, чтобы предотвратить замерзание, если в вашем месте есть конструкция с сухим термометром зимой, которая опускается ниже нуля. Если в помещении очень холодно, может потребоваться значительная концентрация гликоля для предотвращения замерзания. По мере увеличения концентрации гликоля скорость теплопередачи снижается. Например, если вам нужна 50% -ная концентрация этиленгликоля с водой, необходимо будет увеличить теплообменное оборудование и расход / давление охлаждающей жидкости, чтобы отрегулировать концентрацию гликоля.Более крупные охладители жидкости и насосы увеличивают стоимость системы по сравнению с охладителями с меньшей концентрацией гликоля / воды. Этого нельзя избежать в более холодном климате.

Сухая замкнутая система с охлаждением трима

Сухая система с замкнутым контуром и промежуточным охладителем такая же, как и сухая система с замкнутым контуром, но добавляет дополнительный охладитель жидкости. Эта система обычно используется в местах, где летом слишком много сухого термометра, чтобы обеспечить надлежащую температуру охлаждающей жидкости для нагрузки.С добавленным промежуточным охладителем жидкость-жидкость заказчик может использовать источник воды для регулировки температуры до желаемой уставки. Часто используются сухие системы с замкнутым контуром и трим-охладителем, чтобы снизить зависимость от городской воды в качестве охлаждающей жидкости. Покупка и утилизация городской воды становится все дорого. Эти системы могут быть использованы для полного отказа от использования городской воды в течение большинства месяцев в году, тем самым снижая эксплуатационные расходы станции. Система должна иметь подачу свободного чистого воздуха и регулируемую подачу охлаждающей жидкости завода или городской воды, как в случае системы жидкостно-жидкостного охлаждения.

Сильной стороной сухой системы с замкнутым контуром с промежуточным охладителем является то, что она может обеспечивать температуру охлаждающей жидкости ниже, чем в одной сухой системе с замкнутым контуром. Система сократит потребление воды на заводе / в городе в холодное время года.

К недостаткам сухой системы с замкнутым контуром и промежуточным охладителем относятся все те, которые перечислены для сухой системы с замкнутым контуром. Кроме того, теперь требуется некоторое количество охлаждающей жидкости во вторичном контуре в теплое время года. Дополнительные трубопроводы потребуются для охлаждающей жидкости дифферента к / от салазок.Как охладитель дифферента, так и охладитель жидкости с воздушным охлаждением требуют периодического обслуживания и очистки.

Открытые системы испарительного охлаждения

Следующая система, испарительная система охлаждения с открытым контуром, полностью отличается от первых трех, перечисленных выше. Эта система может использовать расчетный термометр по влажному термометру в качестве основы для температуры охлаждающей воды на выходе. Например, если расчетная температура сухого термометра для данного места составляет 95 F, а расчетная влажная термометрия — 75 F, система может обеспечить нагрузку приблизительно 82 F воды.

В системе испарительного охлаждения с открытым контуром вода каскадно пропускает воду через сотовый наполнитель из ПВХ в градирне вместе с окружающим воздухом, продуваемым или всасываемым через наполнитель для испарения воды. Во время испарения оставшаяся вода охлаждается до температуры на 7 F или выше выше температуры по влажному термометру. Испаренная вода заменяется системой подпиточной воды, например, поплавковым клапаном. Оставшаяся вода и подпиточная вода собираются в резервуар, а затем перекачиваются в загрузку, и цикл повторяется.В среднем для системы испарительного охлаждения с открытым контуром требуется 4 галлона в минуту подпиточной и продувочной воды на 1 000 000 БТЕ / ч отбракованного тепла.

Открытые системы испарительного охлаждения

Преимущество этой системы в том, что оборудование обычно недорогое. Системы могут быть простыми в использовании в более теплом климате, но могут потребовать большего контроля в более холодном климате.

Слабые стороны систем этого типа в том, что они обычно требуют обширной системы очистки воды.В системе очистки воды используются одноразовые химикаты, чтобы удерживать кальций и растворенные минералы во взвешенном состоянии. Химическая обработка необходима для предотвращения загрязнения градирни, трубопроводов и теплообменников. Неотъемлемой проблемой испарительной системы открытой башни является то, что вода, протекающая через башню, также является теплоносителем, который прокачивается через нагрузку. Эта вода контактирует с грязной атмосферой. Он улавливает такие загрязнители, как пыль, растительность и т. Д.Эти загрязнения попадают в теплообменники и трубопроводы и могут вызвать серьезные проблемы с обслуживанием.

Открытые башни могут иметь проблемы с контролем в зимние месяцы. Они рассчитаны на работу с полной нагрузкой. Они не всегда хорошо работают при частичной загрузке в очень холодном климате. Если бассейн является частью градирни, для работы в холодную погоду требуется нагреватель, чтобы вода в бассейне не замерзла при отсутствии нагрузки. В холодном климате трубопровод обычно требует теплоизоляции и обогрева для предотвращения замерзания.Для продувки воды потребуется слив, чтобы контролировать проводимость из-за постоянного испарения и концентрации растворенных твердых частиц. Подпиточная вода постоянно требуется из внешнего источника, такого как городская вода или очищенная колодезная вода и т. Д. Биологический контроль бактерий, шлама и плесени является серьезной проблемой для правильной работы открытой системы испарительной башни.

Замкнутые системы испарительного охлаждения

Замкнутая испарительная система — это гибридная система.Испарительная система с замкнутым контуром представляет собой открытую башню с теплообменником с замкнутым контуром, встроенным в башню. Вода из градирни остается снаружи в градирне и не циркулирует по трубопроводу охлаждающей жидкости. Трубопровод охлаждающей жидкости представляет собой замкнутый контур, по которому раствор гликоля / воды течет от градирни к нагрузке и обратно. Отдельная вода из башни перекачивается из резервуара в верхнюю часть башни и разбрызгивается через теплообменник (обычно массив труб) с воздухом, продуваемым или втягиваемым через башню через теплообменник, где испарение воды передает тепло от теплообменника. замкнутый контур охлаждающей жидкости в окружающий воздух.Оставшаяся вода из башни попадает в бассейн, где снова перекачивается на вершину башни, и процесс повторяется. Вода из градирни испарительной системы замкнутого цикла требует подпиточной воды, химической обработки, дренажа, нагревателя бассейна для холодной погоды и продувки, как и описанная выше испарительная система незамкнутого цикла.

Замкнутые системы испарительного охлаждения

Преимущество испарительной системы с замкнутым контуром состоит в том, что она может подавать хладагент с замкнутым контуром к нагрузке при температуре примерно на 7-10 F выше температуры влажного термометра.Охлаждающая жидкость замкнутого контура остается свободной от загрязнений и позволяет теплообменнику оборудования и трубопроводам оставаться чистыми. Любые загрязнения из атмосферы останутся снаружи вместе с башней. Будет использоваться меньше химикатов для обработки воды, поскольку они обрабатывают только открытую воду в градирне, а не хладагент в трубопроводах и теплообменниках системы.

Недостатки испарительной системы с замкнутым контуром заключаются в том, что вам потребуется вода для очистки, продувки и подпитки для воды на стороне градирни системы.Для работы в холодную погоду системе потребуются дренажный и теплоизолированный трубопровод. Для предотвращения замерзания раковины в холодную погоду в нерабочее время требуется нагреватель раковины. Система требует дополнительного насоса, подключенного к градирне, который обеспечивает циркуляцию воды в бассейне.

Системы водяного охлаждения

Последний тип системы охлаждения, который мы обсудим, — это система с охлажденной водой. Чиллер обычно имеет механическое компрессионное устройство, которое преобразует энергию в сжатый хладагент с помощью компрессора определенного типа.Сжатый хладагент подается по трубопроводу в конденсатор, который отводит тепло хладагента в атмосферу или в какой-либо жидкий хладагент. Сжатый хладагент меняет состояние с газа на жидкость в конденсаторе и подается по трубопроводу в испаритель, где он дозируется или расширяется в испарителе. Расширение жидкостного охлаждения под высоким давлением снижает температуру испарителя. Охлаждаемая жидкость прокачивается через теплообменник испарителя, и тепло передается хладагенту.Пар низкого давления возвращается в компрессор, и цикл для хладагента начинается снова. Хладагент течет из теплообменника испарителя к нагрузке, где тепло передается хладагенту в теплообменнике нагрузки, а затем возвращается обратно в испаритель для повторения цикла.

Системы водяного охлаждения

Сильные стороны чиллера заключаются в том, что он может производить температуру охлаждающей жидкости намного ниже расчетной по влажному или сухому термометру.Температура охлаждающей жидкости на выходе зависит не столько от температуры окружающей среды.

Слабые стороны чиллера в том, что это довольно сложное оборудование. Чиллеры стоят больше, чем все другие виды охлаждающего оборудования. Для правильной работы им требуется специальное периодическое обслуживание и обученные сертифицированные специалисты по ремонту. Сами чиллеры создают дополнительную тепловую нагрузку от компрессоров, которую также необходимо снимать в конденсаторе. Мощность, необходимая для работы чиллера, намного выше, чем у других типов систем охлаждения, рассмотренных выше.Для работы чиллеров в холодную погоду требуются специальные дополнительные компоненты на чиллере. Изменения нагрузки могут потребовать специальных средств управления и / или нескольких контуров чиллера для эффективной работы, что увеличивает общую стоимость оборудования.

Заключение

Как видите, существует множество типов систем охлаждения, удовлетворяющих вашим требованиям. Лучше всего привлечь вашего специалиста по системе охлаждения на раннем этапе планирования, чтобы помочь вам выбрать лучшую систему, соответствующую вашим потребностям.

За дополнительной информацией обращайтесь к Брюсу Уильямсу, Hydrothrift Corporation, тел .: 330-264-7982

Для получения дополнительных статей о системе охлаждения посетите сайт airbestpractices.com/technology/cooling-systems .

Оборудование для нагрева и охлаждения станков

Ближайшее событие:

Сегодня, когда требования к допускам становятся все более жесткими, становится важным поддерживать постоянную температуру заготовки, шпинделя и / или элементов станка.Будь то шлифовка, хонингование, фрезерование, сверление или ручное сверление, обращайтесь к специалистам Thermal Care, чтобы удовлетворить ваши потребности. С устройствами, которые могут регулировать температуру охлаждающей жидкости для отслеживания температуры окружающей среды, базовой температуры машины, другого эталона или фиксированной уставки, есть чиллер Thermal Care для вашего применения. Даже сложная обработка деталей, требующая систем удаления стружки под высоким давлением, не является проблемой.

Сконфигурированные для прямого охлаждения водорастворимой охлаждающей жидкости или косвенного охлаждения масляной охлаждающей жидкости, системы охлаждающей жидкости Thermal Care будут обеспечивать точное безотказное обслуживание в течение многих лет.Кроме того, мы можем предложить водно-гликолевые чиллеры со шпинделем, имеющие такие же характеристики устойчивости к высоким температурам, что и наши системы охлаждения. Независимо от того, нужна ли вам автономная система охлаждения или интегрированная система охлаждения для работы с несколькими машинами, у Thermal Care есть система охлаждения для вас.

Позвоните нашим специалистам сегодня, чтобы узнать, как Thermal Care может решить ваши проблемы с контролем температуры охлаждающей жидкости.

Хотите сэкономить? Рассмотрим чиллер с воздушным охлаждением и чиллер с водяным охлаждением.

Посмотрите нашу брошюру по станкам сегодня!

Бесплатный калькулятор выбора станка — ответьте на 4 простых вопроса, которые помогут вам найти чиллер, который подходит именно вам!


Чиллеры для станков

Переносные чиллеры

  • Способен поддерживать температуру охлаждающей жидкости от 50 ° F до 90 ° F
  • Прямое охлаждение водорастворимых хладагентов
  • Карманные фильтры для различных уровней микрон
  • Доступно отслеживание температуры окружающей среды или контроль уставки
  • Доступны в размерах от 1 тонны до 40 тонн
  • Включает встроенную систему перекачки цветной воды / охлаждающей жидкости
  • Доступны в конденсаторах с водяным и воздушным охлаждением, а также с выносными конденсаторами с воздушным охлаждением
  • При необходимости легко переносится с одного станка на другой

Переносные чиллеры View


Центральные чиллеры

  • Поддерживает центральную температуру воды 50 ° F
  • Доступны в размерах от 20 тонн до 300 тонн
  • Связь с отдельными машинами через блоки теплообменников
  • Подбирается и разрабатывается с учетом требований и возможностей каждого клиента
  • Некоторые модели доступны со встроенной системой откачки воды
  • Доступны в конденсаторах с водяным и воздушным охлаждением, а также с выносными конденсаторами с воздушным охлаждением.
  • Доступен в «сухом» типе или в конфигурациях с адиабатической вспомогательной системой

Посмотреть центральные чиллеры


Комплекты теплообменников

  • Доступно для охлаждающей жидкости на водной или масляной основе
  • Доступны системы контроля температуры окружающей среды и модулирующие клапаны
  • Манометры давления и температуры на входе / выходе стандартные
  • Паяные пластинчатые или пластинчато-рамные теплообменники доступны с различными типами прокладок
  • Теплообменник очищаемого типа для сложных условий, например, шлифования твердого сплава

Посмотреть теплообменники


Комбинированный встраиваемый змеевик охладителя

  • Более дешевая альтернатива интегрированной конструкции чиллера
  • Змеевик рассчитан в соответствии с емкостью — особая длина не требуется
  • Минимизирует возможность загрязнения охлаждающей жидкости
  • Более точный допуск по температуре возможен с регулирующим клапаном
  • Чиллер может быть установлен в любом месте и перемещен по мере необходимости
  • Простая замена змеевика независимо от чиллера
  • Гибкость нескольких машин на чиллер
  • Избегайте принудительного включения чиллера / машины
  • Простота обслуживания с напольным охладителем

Нажмите здесь, чтобы перейти к калькулятору выбора чиллера для станков

Типы систем охлаждения — Руководство по покупке Thomas

Системы охлаждения — это механизмы, которые служат для отвода тепла от машин, процессов или воздуха, передавая эту тепловую энергию жидкой охлаждающей жидкости через теплообменники.При проектировании систем охлаждения учитывается тепловыделение охлаждаемых машин / устройств, тепловой профиль рабочей среды, эффективность охлаждения и механизмы теплопередачи для создания подходящей методологии, которая будет поддерживать желаемые диапазоны температур для оборудования или конструкции. , обусловленные ограничениями, налагаемыми соображениями безопасности, отраслевыми стандартами или надежностью оборудования.

Охлаждение может осуществляться с помощью различных процессов. При выборе правильной системы охлаждения для ваших нужд учитывайте тип системы охлаждения и ее применение в вашей отрасли, а также ее емкость, эффективность и производительность.

Общие типы систем охлаждения включают:

Подробнее об этом ниже.

Адиабатические системы охлаждения

Уменьшая тепло за счет втягивания теплого воздуха через смоченные водой подушки, адиабатические системы охлаждения регулируют температуру с уменьшенным потреблением воды. Отлично подходят для жарких и сухих сред, адиабатические системы охлаждения также обеспечивают сухое охлаждение в более конденсированном пространстве и с меньшими требованиями к мощности, чем традиционные испарительные агрегаты.

Теплый сухой воздух проходит через подушки предварительного охлаждения для опускания сухого термометра поступающего воздуха для лучшего отвода тепла системой.Вода, испаряющаяся в подушках, охлаждает воздух. Использование адиабатического оборудования может минимизировать риск образования накипи, коррозии и распространения бактерий, переносимых водой.

Системы охлаждения тумана / тумана

Система тумана и тумана — взаимозаменяемые термины для этого подхода к охлаждению. Влажные районы выиграют от систем охлаждения туманом. Эти системы часто можно увидеть в теплицах и комнатах для выращивания. Устройство распространяет туман или мелкий туман по всему пространству, чтобы вода нагрелась и испарилась.

Системы охлаждения туманом заставляют воду через сопла превращаться в мелкие водяные капли, которые быстро поглощают тепло и испаряются.Это устраняет тепло из окружающей среды для охлаждения воздуха.

Системы охлаждения с высоким тепловым потоком

В системах охлаждения с высоким тепловым потоком могут использоваться тепловые трубы, холодные пластины, охладители жидкости или теплообменники. Часто наблюдается в компьютерах, средствах связи, военном деле, авиакосмической промышленности, электронике и энергетике, высокий отвод теплового потока обычно достигается при однофазной или двухфазной теплопередаче при кипении.

Системы водяного охлаждения с индукционным нагревом

В зависимости от системы, системы водяного охлаждения с индукционным нагревом могут использовать теплообменник вода-воздух, теплообмен вода-вода или воздушное охлаждение.Эти системы используются для снижения уровня температуры рабочей катушки, рабочей головки или источника питания, борясь с теплом, генерируемым электрическими потерями.

Системы охлаждения биполярных транзисторов с изолированным затвором (БТИЗ)

Биполярный транзистор с изолированным затвором (IGBT) Системы охлаждения являются распространенным решением для силовой электроники. Из-за больших электрических токов и трансформируемых напряжений даже малейшая неэффективность может привести к большим объемам отходящего тепла. Воздушного охлаждения через радиаторы недостаточно для применения с большой мощностью.Жидкостное охлаждение используется для передачи тепла и обеспечения более высокой удельной мощности в более компактном модуле.

Системы охлаждения микроклимата

Системы охлаждения микроклимата обеспечивают передачу тепла людям, подвергающимся повышенным температурам окружающей среды. Медицинские, военные и промышленные пользователи, сталкивающиеся с тепловым стрессом, могут извлечь выгоду из систем, которые могут быть портативными, устанавливаемыми на человеке или на автомобиле для пассивной теплопередачи.

Насосные системы жидкостного охлаждения

Насосные системы жидкостного охлаждения используются в автомобильной, авиационной, энергетической и других отраслях промышленности.Эти системы, обычно состоящие из насоса, охлаждающей пластины, радиатора и жидкостных трубопроводов, обеспечивают циркуляцию жидкости для отвода тепла. Насос водяного охлаждения обеспечивает циркуляцию жидкости по системе, отводя тепло. Эти насосы будут обеспечивать регулирование объема и расхода жидкости, чтобы обеспечить быстрое и эффективное охлаждение.

Другие типы систем охлаждения

Правильное решение для охлаждения может обеспечить безопасность продукта и продлить срок его службы. Вы найдете системы охлаждения в автомобилях, промышленном оборудовании, ядерных реакторах и многих других типах оборудования.Эти системы также можно разделить на категории по применению, включая сельское хозяйство, наземное вспомогательное оборудование самолетов, автоклав, пищевую промышленность, лабораторию, лазер и линейный ускоритель.

Вы также можете искать систему в зависимости от того, где вы будете устанавливать охлаждающее устройство: крыша, переносная, уличная, точечная или в корпусе.

Узнать больше

Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Другие изделия для охлаждения

Прочие «виды» изделий

Больше от Machinery, Tools & Supplies

3 типа систем охлаждения и принцип их работы

Охлаждение — это передача тепловой энергии от одной среды к другой. В промышленных приложениях охлаждение может иметь решающее значение для обеспечения того, чтобы процессы не вызывали перегрев оборудования или продуктов. Во многих системах охлаждения вода используется в качестве среды для поглощения тепла, поскольку вода имеет высокую температуру кипения и высокую удельную теплоемкость.Существует множество различных способов создания промышленной системы охлаждения, но три основных типа можно резюмировать, исследуя, как охлаждающая вода используется в каждой системе.

Прямоточная система охлаждения

При прямоточном охлаждении вода перекачивается из ближайшего источника и проходит через систему только один раз для поглощения технологического тепла. Затем он возвращается в исходный источник. Этим источником может быть река, озеро, океан или колодец.

Такая конструкция обычно используется там, где доступны большие объемы недорогой воды.Кроме того, эти системы типичны, когда потребность в охлаждении низкая или умеренная, процессы не критичны, и есть место для размещения большого оборудования и больших объемов воды. Одним из недостатков прямоточного охлаждения является восприимчивость к возмущениям из-за стохастических водных явлений, таких как наводнение. Более того, эти системы постепенно сокращаются из-за опасений по поводу качества воды и ее сохранения.

Среднее изменение температуры: 5-10 ° F (3-6 ° C)
Количество использованной воды: Высокое
Примеры:

  • Системы питьевой воды
  • Технологическая вода
  • Общие услуги

Закрытая рециркуляционная система / Сухая градирня:

В закрытых рециркуляционных системах или сухих градирнях тепло, поглощаемое охлаждающей водой, либо передается второму хладагенту, либо выбрасывается в атмосферу.Слово «сухая» используется потому, что вода никогда не подвергается воздействию воздуха, и в результате теряется очень мало воды. Автомобильный двигатель — хороший пример закрытой системы охлаждения.

Испарение не используется в закрытых рециркуляционных градирнях. Вместо этого холодный воздух проходит через серию небольших трубок, содержащих циркулирующую охлаждающую жидкость. Тепло передается от горячей жидкости внутри трубок холодному воздуху, в результате чего происходит охлаждение. Затем охлаждающая жидкость возвращается обратно в двигатель.

Изменение средней температуры: 10-15 ° F (6-8 ° C)

Количество использованной воды: Незначительное

Примеры:

  • Автомобильный радиатор
  • Системы охлажденной воды
  • Температура пищевых продуктов Контроллеры

Открытая рециркуляционная система / водяная градирня / испарительная градирня:

Открытые рециркуляционные системы охлаждения или мокрые градирни являются наиболее широко используемыми конструкциями в промышленности.Как и в закрытых рециркуляционных системах, в открытой системе снова и снова используется одна и та же вода. Его наиболее заметной особенностью является большая наружная градирня, в которой для отвода тепла от охлаждающей воды используется испарение. Из-за механизма этот тип градирни еще называют испарительной градирней. Эта система состоит из трех основных частей оборудования: циркуляционного водяного насоса (ов), теплообменника (ов) и градирни.

Принцип работы водяных градирен:

В системах охлаждения с открытой рециркуляцией используются «мокрые градирни», где охлаждающая вода напрямую контактирует с восходящим потоком воздуха.Вода из теплообменника равномерно перекачивается через верхнюю часть градирни. Он спускается каскадом вниз и разбивается на крошечные капельки, проходя через серию брызговиков, называемых заполнением градирни. Этим наполнителем могут быть гофрированные пластиковые листы, деревянные планки или другие устройства, которые увеличивают площадь поверхности, тем самым усиливая испарение. Когда капли воды отскакивают от наполнителя градирни, самые горячие молекулы отделяются от воды и уносятся вверх и из градирни в виде «дрейфа».Оставшаяся охлажденная вода собирается в резервуаре на дне башни, который называется резервуаром. Охлажденную воду теперь можно перекачивать обратно в теплообменник.

Среднее изменение температуры: 10-30 ° F (6-17 ° C)

Количество используемой воды: Умеренное

Примеры:

  • Градирни
  • Распылительные бассейны

Градирня Качество воды

Системы охлаждения полагаются на воду в качестве теплоносителя.Это означает, что качество воды становится важным для непрерывной работы любой системы охлаждения. Понимание типа системы охлаждения в вашем приложении поможет определить наиболее эффективный план очистки воды. Узнайте больше о водоподготовке градирни в нашей заметке по применению:

Поделитесь этой историей, выберите свою платформу!

Этот сайт использует Akismet для уменьшения количества спама. Узнайте, как обрабатываются данные вашего комментария.

Система охлаждения | инженерия | Britannica

Система охлаждения , устройство, используемое для поддержания температуры конструкции или устройства от превышения пределов, установленных требованиями безопасности и эффективности.При перегреве масло в механической коробке передач теряет смазывающую способность, а жидкость в гидравлической муфте или гидротрансформаторе протекает под создаваемым давлением. В электродвигателе перегрев вызывает ухудшение изоляции. Поршни перегретого двигателя внутреннего сгорания могут заедать (заедать) в цилиндрах. Системы охлаждения используются в автомобилях, оборудовании промышленных предприятий, ядерных реакторах и многих других типах оборудования. (Для обработки систем охлаждения, используемых в зданиях, см. кондиционирование воздуха.)

Подробнее по этой теме

Конструкция

: Отопление и охлаждение

Системы контроля атмосферы в малоэтажных жилых домах используют природный газ, мазут или катушки электрического сопротивления в качестве центральных источников тепла; …

Обычно используемые охлаждающие агенты представляют собой воздух и жидкость (обычно воду или раствор воды и антифриза) по отдельности или в комбинации.В некоторых случаях может быть достаточно прямого контакта с окружающим воздухом (свободная конвекция); в других случаях может потребоваться принудительная конвекция воздуха, создаваемая вентилятором или естественным движением горячего тела. Жидкость обычно перемещается через непрерывный контур в системе охлаждения с помощью насоса.

В трансмиссии, если площадь поверхности корпуса (контейнера) достаточно велика по сравнению с потерянной мощностью, или если трансмиссия находится в движущемся транспортном средстве, обычно имеется достаточная свободная конвекция и нет необходимости в искусственном охлаждении.Чтобы усилить охлаждающий эффект за счет увеличения площади поверхности, корпус может быть снабжен тонкими металлическими ребрами. На некоторых стационарных механических трансмиссиях может потребоваться циркуляция смазочного масла по трубам, окруженным холодной водой, или использование вентилятора для продувки воздуха по трубам, окруженным маслом в резервуаре. На многих электродвигателях к вращающемуся элементу прикреплен вентилятор для создания потока охлаждающего воздуха через корпус.

В автомобиле движение транспортного средства обеспечивает достаточное охлаждение с принудительной конвекцией для трансмиссии и шестерен заднего моста; Однако в двигателе выделяется так много энергии, что, за исключением некоторых ранних моделей и некоторых небольших автомобилей с двигателями малой мощности, воздушное охлаждение является недостаточным, и требуется система водяного охлаждения (радиатор).

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Типичная автомобильная система охлаждения содержит (1) ряд каналов, отлитых в блоке двигателя и головке цилиндров, окружающих камеры сгорания с циркулирующей жидкостью для отвода тепла; (2) радиатор, состоящий из множества небольших трубок, снабженных решеткой из ребер для быстрого отвода тепла, который принимает и охлаждает горячую жидкость от двигателя; (3) водяной насос, обычно центробежного типа, для циркуляции жидкости в системе; (4) термостат для регулирования температуры путем изменения количества жидкости, поступающей в радиатор; и (5) вентилятор для втягивания свежего воздуха через радиатор.

Для предотвращения замерзания в воду добавляют раствор антифриза или заменяют его. Для повышения температуры кипения раствора в системе охлаждения обычно повышается давление с помощью герметичной крышки на радиаторе с клапанами, которые открываются наружу при заданном давлении и внутрь, чтобы предотвратить возникновение вакуума при охлаждении системы.

Холодильные машины и процессы — Пластмассы


Растет значение охлаждения

Холод — важный параметр качества и производительности

Решение, предложенное в этой статье, представляет собой важный шаг вперед в области систем охлаждения, применяемых в промышленности по производству и переработке пластмасс и резины.Frigel Firenze создал инновационную серию машин для реализации системы охлаждения Ecodry System

Несмотря на то, что разные типы трансформации пластмасс могут отличаться друг от друга, в системе охлаждения может быть применен общий принцип. Фактически, литье под давлением, как и другие виды экструзии и прессования, предъявляют схожие требования к охлаждению:
I. охлаждающая машина, которая включает в себя все стороны, которые должны охлаждаться для обеспечения надлежащего функционирования такой же производственной машины.
II. процесс охлаждения, который включает только те части, которые необходимо охлаждать до контролируемой температуры для затвердевания пластмасс после обработки.

I. Холодильная машина

Большинство машин для обработки пластмасс имеют гидравлический привод. Часть механической работы, выполняемой электронасосом, передается маслу в виде тепла, вызывая повышение температуры. Адекватная рабочая температура масла составляет от 45 до 50 C, поэтому нам нужна система охлаждения.Производственные машины обычно оснащены теплообменником agua-aceite соответствующих размеров и термостатическим клапаном, который регулирует поток охлаждающей воды через permutador. Важность этого клапана заключается в поддержании температуры масла на уровне, указанном производителем машины.
Слишком холодное, т. Е. Высоковязкое масло приводит к высокому потреблению энергии насосом двигателя, что сокращает срок его службы. С другой стороны, слишком горячее масло, то есть мало вязкое, приводит к утечкам в досках и трико обручей и к долгому сокращению вашей жизни.
Другие точки, которые требуют постоянного охлаждения, такие как область пластификации, двухшнековый винт и т. Д., А также регулятор температуры воды или масла, также включены в систему охлаждения машины.

Рисунок 1

Общая потребность в охлаждении машин для отделения обработки пластмасс может варьироваться в зависимости от типа процесса; Однако мы можем оценить, что это составляет от 50 до 90 процентов от общей потребности в охлаждении.
Подводя итог основным аспектам охлаждающей машины, мы можем отметить, что:
— это самая важная тепловая нагрузка (50/90 процентов) от общего количества, необходимого для системы охлаждения
— нет смысла использовать водяное охлаждение для охлаждение, требуемая температура выше 35 С; Для охлаждения достаточно использовать воду комнатной температуры.
-Существует строгий контроль температуры для охлаждения.
-Нет необходимости настраивать систему охлаждения для каждого пользователя, поэтому центральная холодильная установка является идеальным решением для охлаждения машин.

Решения

Традиционные решения:
Отброшенная вода: Это решение осталось в прошлом не только по техническим причинам (проблема заделки) и жестким требованиям фильтрации, но и по законам, ограничивающим все большее количество питьевой воды из природных источников. источники (родники, реки, озера).В некотором роде или в некоторых случаях доступность воды может быть ограничена. Кроме того, растущее осознание защиты окружающей среды совершенно справедливо определяет этот тип охлаждения из-за теплового загрязнения, возникающего при движении воды.
Градирня
: эта система используется давно. Однако проблемы с установкой вместе с высокими затратами на поддержание «открытого круга» привели к систематической замене промышленных водяных охладителей замкнутого цикла, оснащенных холодильными компрессорами.Фактически, некоторые из наиболее серьезных проблем, связанных с градирней, такие как образование накипи, образование водорослей, бактериальное загрязнение и кислотная коррозия, требуют постоянного и дорогостоящего обслуживания.
Промышленный холодильник :
водоохладители и охлаждающие установки были разработаны как типичные решения проблем вышеуказанных систем охлаждения. Однако использование холодильных компрессоров для охлаждения машин требует большого потребления энергии, что приводит к высоким затратам на энергию.В целях снижения затрат на электроэнергию недавно были предложены «системы охлаждения окружающей среды» в качестве альтернативы экономии энергии в холодное время года. Однако по техническим причинам промышленные морозильные камеры должны работать с температурой охлаждающей воды не выше 15–18 ° C, даже если необходимая температура масла составляет от 40 до 50 ° C. Это ограничивает возможность экономии энергии в течение чрезвычайно короткого года.

Рисунок 2

Кроме того, промышленные чиллеры и холодильные установки представляют собой сложные машины и требуют высококвалифицированного персонала для выполнения работ по установке и техническому обслуживанию.

Новое решение
Система сухого охлаждения : обеспечивает новейшую технологию теплообмена воздух-вода. Он состоит из обширной области из меди и алюминия, снабженной ребрами и осевыми вентиляторами высокой скорости движения. Эти теплообменники отличаются высокой надежностью и хорошей функцией; они способны поддерживать температуру воды на несколько градусов выше температуры окружающей среды. Крупные технологические разработки, осуществленные при его строительстве, позволили значительно снизить его стоимость.Они являются идеальным решением для холодильных машин; работа в замкнутом контуре, исключающая расход воды и сложную работу по техническому обслуживанию, характерную для градирен; Кроме того, его потребляемая мощность составляет одну восьмую часть потребления промышленного холодильника с холодильными компрессорами.
Требуется только простое и экономичное распределительное устройство, потому что трубы не изолированы и не требуют воздуха из-за наличия каналов для наружной установки. Наконец, полное отсутствие обслуживания делает сухой охладитель самым надежным решением в долгосрочной перспективе.В таблице 1 приведено схематическое сравнение вышеуказанных решений.


Сравнительный пример Давайте посмотрим на энергопотребление для случая, указанного в таблице 2. Литьевая машина на 350 тонн требует от 15000 до 17000 ккал / ч. за его «машинное охлаждение». Чистая экономия денег, которую можно получить при использовании сухого охладителя, составит примерно 325 000 песет в год с периодом амортизации 4 месяца без учета минимальных затрат на установку и обслуживание

II.процесс охлаждения

Процесс охлаждения строго и исключительно разработан для индустрии пластмасс, которая сильно отличается от охлаждающих машин.
В любом типе производственного процесса (пресс-формы, каландры) условия охлаждения чрезвычайно важны для достижения лучшего качества и более высокой производительности самого процесса. В частности, чем больше будет времени охлаждения, тем больше повысится производительность. Точно так же правильное охлаждение улучшает качество продукта, сокращает количество отходов и оптимизирует общую эффективность производственного процесса.
Таким образом, очевидно, что в зависимости от обрабатываемого сырья, производимого изделия и условий производства каждый процесс, в частности, имеет свой собственный набор параметров, оптимизированных для охлаждения воды (температура, давление, скорость движения ), которые отличаются от других текущих процессов.
Вторым основным аспектом процесса охлаждения является возможность повторения оптимизированного ряда параметров охлаждения при изготовлении одного и того же изделия. Нет смысла искать оптимальные условия охлаждения для достижения наилучших результатов, если система не может поддерживать свои постоянные и точные значения.
Обобщая ключевые аспекты процесса охлаждения, мы можем указать:

Процесс охлаждения имеет большое значение для производительности, как в качественном, так и в количественном отношении. Каждый процесс, в частности, имеет свой собственный набор параметров, оптимизированных для охлаждения (температура, давление и скорость движения воды), который отличается от других процессов. Как только найдены оптимизированные значения параметров охлаждения, они должны оставаться постоянными и точными, чтобы достичь идеальной повторяемости производственных условий.

Решения

Традиционное решение
Единственным доступным на сегодняшний день решением был водоохладитель большой мощности с охлаждающими компрессорами. Эти установки состоят из центрального блока для охлаждения, как правило, с несколькими компрессорами, которые распределяют воду для охлаждения всех производственных машин через уникальный распределительный контур. Таким образом, холодная вода подается с самой низкой температурой, необходимой для всех пользователей. Все процессы, требующие меньшего охлаждения, можно контролировать, уменьшая поток охлажденной воды (fluxmetro).
Уменьшение уровня потока охлажденной воды в процессе приводит к тому, что температура воды имеет тепловую разницу между входом и выходом, что подразумевает неравномерное распределение температуры на металлической поверхности, которая находится в контакте с пластиком.
Понятно, что этот тип решения никогда не может удовлетворить потребность в охлаждении вышеупомянутого процесса. Централизованная холодильная установка имеет следующие недостатки:

Невозможно различить количество параметров (температура, давление и скорость потока воды) водяного охлаждения для каждого процесса.Процессы связаны через цепочку распределения, с помощью которой существует единое целое с точки зрения охлаждения по отношению к параметрам работы всех других процессов. Операция или задержка пользователя изменяет скорость потока и давление воды для других процессов производства. Он подает воду, охлажденную до самой низкой температуры, требуемой для всех пользователей. Следовательно, для пользователей возникает бесполезная стоимость энергии, которую можно охладить водой с более высокой температурой. Точность регулирования температуры промышленного водоохладителя довольно грубая; Фактически, температура воды может варьироваться от 3 до 5 ° C от желаемой точки.Дифференциация для каждого процесса может быть обеспечена только за счет снижения скорости движения воды, остальной эффективности теплообмена и создания высокого DT на протяжении всего процесса; Это приводит к неравномерному распределению температуры по изделию.

Новое решение
frigel firenze Компания, представленная в Испании Alimatic , создала серию машин для реализации системы охлаждения, получившую название ecodry system .
Холодильник сверхкомпактного технологического назначения. Как уже указывалось, решение для охлаждения процесса должно обеспечивать адаптируемую систему охлаждения, позволяющую пользователю охлаждать этот конкретный процесс независимо от других. До сих пор это решение было невозможно применить на практике из-за размеров промышленных охладителей, уровня шума и раздражающего воздушного потока, создаваемого вентиляторами конденсатора.
Сегодня, благодаря технологическому развитию в производстве типовых пластин теплообменников для охлаждения и микропроцессорного электронного управления, можно получить охладители надежного сверхкомпактного процесса и высокой точности со следующими техническими характеристиками: , потому что они работают за счет конденсации воды.
-Имеют небольшие размеры, всего лишь одну пятую от традиционных водоохладителей большой емкости, поэтому их можно установить близко, чтобы они не занимали много места.
— Обеспечьте непрерывный контроль температуры, чтобы он оставался точным и согласованным с пределом максимальной погрешности «11 ° C.
-Они могут обеспечить пользователю скорость потока воды, которая в два раза больше, чем у традиционных промышленных охладителей, что обеспечивает идеальную однородность температуры во всем объекте работы.
-Они могут быть запрограммированы одним и тем же процессом через серийные билеты машины, чтобы установить температуру для подачи аварийной команды холодильника, тем самым исключив полное количество отходов.
-Позволяет автоматически опорожнять технологический контур, облегчая замену форм без утечки смеси воды и гликоля.
-Они оснащены автоматическим устройством для охлаждения окружающей среды, которое заставляет работать компрессор только тогда, когда температура воды центральной установки выше установленной. Это позволяет значительно сэкономить деньги на процессе охлаждения.
Как упоминалось ранее, эти технологические охладители работают за счет конденсации воды; Это означает, что охлаждение — вода ниже 40 ° C — создает тепловую нагрузку, полученную от пользователей.
На практике каждый технологический холодильник будет передавать свою собственную тепловую нагрузку той же центральной установке, которая охлаждает машину, т.е.е. система сухого охлаждения.
Данный тип системы охлаждения состоит из:
-Холодильника сверхкомпактного технологического процесса высокой точности, размеры которого указаны для ориентировочного производства машины.
— Централизованная установка сухого охлаждения для рассеивания с низкой стоимостью энергии, поэтому тепло, производимое машиной в процессе, равно теплу, производимому технологическими охладителями.
— Неизолированная цепочка поставок, в которой циркулирует охлаждающая вода комнатной температуры.

Франсиско Сентеллес
Технический директор Alimatic

Таблица 1
Точка решения Градирня Промышленный охладитель Сухой охладитель
Потребление электроэнергии под очень высокий под
расход воды высокая отсутствует отсутствует
стоимость инверина под очень высокий средний
стоимость завода под очень высокий минимум
обслуживание специализированные и постоянные специализированные и постоянные отсутствует Таблица 2
Литье под давлением 350 тонн. Промышленный водоохладитель Сухой охладитель
Требования к охлаждению 15000-17000 Ккал.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.